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Resumo: Este trabalho compara algoritmos estocásticos diferentes aplicados a problemas 

de minimização de funções teste, para as quais técnicas matemáticas tradicionais 

costumam falhar. Os algoritmos estocásticos avaliados neste trabalho foram Colônia 

Artificial de Abelhas (CAB), Evolução Diferencial (ED), Enxame de Partículas (EP) e 

Recozimento Simulado (RS). Os parâmetros internos de cada algoritmo foram alterados e 

seus efeitos na performance do algoritmo foram avaliados e comparados na minimização 

de seis funções teste (Ackley, Griewank, Parabolic, Rastrigin, Rosenbrock and Scheffers). 

Os resultados permitiram concluir sobre a importância de uma definição adequada dos 

parâmetros internos. Além disso, a minimização da função de Rosenbrock com alta 

dimensão foi realizada com a melhor configuração de cada algoritmo. Os resultados 

mostraram que a maioria dos algoritmos conseguiu encontrar o mínimo global das funções 

multimodais. Entretanto, os algoritmos ED e CAB apresentaram os melhores resultados em 

termos de convergência e qualidade de resultados. 

 

Palavras-Chave: Simulated Annealing, Differential Evolution, Artificial Bee Colony, 

Particle Swarm Optimization. 

 

Abstract: This paper compares different stochastic algorithms applied to benchmark 

function minimization problems, for which traditional mathematical techniques might fail. 

The stochastic algorithms analyzed in this work were the Artificial Bee Colony (ABC), 

Differential Evolution (DE), Particle Swarm Optimization (PSO) and Simulated Annealing 

(SA). Internal parameter settings of each algorithm were changed and its effects in the 

algorithms performance were evaluated and compared in minimization of six test functions 

(Ackley, Griewank, Parabolic, Rastrigin, Rosenbrock and Scheffers). The results allowed 

concluding about the importance of an appropriate definition of the internal parameter 

values of each algorithm. Besides, the minimization of the Rosenbrock function with high 

dimension was carried out with the best configuration of each algorithm. Based on a 

comparative analysis, the results showed that most of the algorithms could find global 

minima of the multimodal functions. However, the DE and ABC algorithms presented the 

best results in terms of convergence speed and quality of the results. 

 
Keywords: Simulated Annealing, Differential Evolution, Artificial Bee Colony, Particle 

Swarm Optimization.  
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1. INTRODUCTION 

 

Optimization problems are present in 

several fields of expertise, like in 

mathematics, physics, statistics, chemistry, 

engineering and economy. With the 

development of high-speed computers, 

researchers have focused on solving harder 

optimization problems and, consequently, 

have developed optimization algorithms 

that are able to solve these hard problems. 

A hard optimization problem can be 

characterized as an optimization of a 

nonlinear objective function that depends 

on a high number of variables and presents 

a high number of local optima and function 

discontinuities. According to Singh et al. 

(2005), objective functions with these 

characteristics can be found in chemical and 

biochemical catalysis, molecular design, 

liquid-liquid extraction processes and 

polymerization reactors. 

In this scenario, the use of the 

traditional optimization algorithms, such as 

Newton-based methods and the direct 

search methods, are discouraged (Schwaab 

et al, 2008). Although they are able to find 

a minimum, they do not assure that the 

global one is found. Furthermore, the 

traditional methods are dependent on a 

good initial guess of the optimum solution. 

In the case of Newton-based methods, the 

derivatives of the objective functions are 

necessary, constituting a strong limitation 

when dealing with discontinuous objective 

functions. 

In order to overcome these difficulties, 

a class of numerical procedures called 

stochastic or population-based optimization 

algorithms has been developed (Kennedy 

and Eberhart, 1995; Corana et al, 1987; 

Price and Storn, 2005). The expression 

‘population-based’ is used because some of 

these optimization procedures are executed 

with a set of possible solutions, instead of 

only one that converges to the optimum, 

like the traditional optimization methods. 

The expression stochastic is used due to the 

presence of a strong random component 

that associates an extensive number of 

objective function evaluations and a 

population-based search approach, 

introducing a global search characteristic, 

eliminating the need for good initial 

guesses of the optimal solution and 

increasing the probability of finding the 

global optimum. These algorithms also do 

not evaluate derivatives of the objective 

function and can be employed in the 

optimization of non-continuous objective 

functions without any additional effort. 

The features of the stochastic 

optimization algorithms have gained a lot 

of attention and they have been used in 

many different optimization problems, such 

as dynamic optimization, multiobjective 

optimization, parameter estimation, 

nonlinear dynamic analysis of chemical 

processes, clustering analysis, constrained 

and global optimizations (Durand et al, 

2009; Babu et al, 2005; Schwaab et 

al ,2008; Ourique et al, 2002; Karaboga e 

Ozturk, 2011; Karaboga e Akay, 2011). 

Several stochastic optimization 

algorithms can be found in literature, such 

as Genetic Algorithm (GA), Simulated 

Annealing (SA), Particle Swarm 

Optimization (PSO), Differential Evolution 

(DE) and Artificial Bee Colony (ABC) 

(Holland, 1975; Kirkpatrick et al, 1983; 

Kennedy e Eberhart, 1985; Storn e Price, 

1997; Karaboga e Basturk, 2007) . The 

number of available algorithms becomes 

very high if the modifications in the 

original algorithms (Karaboga e Akay, 

2011; Tsallis e Stariolo, 1996; Chen e Chi, 

2010; Liu e Sun, 2011), as well as the 

combination of different optimization 

algorithms (Da e Xiurun, 2005; Kao e 

Zahara, 2008) are considered. 

Due to the high number of stochastic 

algorithms, a question that always arises is 

about the relative performance of such 

algorithms. The high number of stochastic 

algorithms is the first difficulty when 

making a comparison among them. A 

second difficulty is associated with the 

differing performance of the stochastic 

algorithms in different optimization 

problems, like problems with many local 

optima or problems with discontinuous 

objective function. It should also be 

emphasized that the stochastic algorithms 

contain some search parameters that must 

be well defined to allow a good 

optimization performance. Despite the fact 

that the influence on stochastic algorithms 

performance of the search parameter values 
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are rarely evaluated, it is important to point 

out that the proper definition of the search 

parameter values can contribute to the 

control of the efficiency and robustness of 

the optimization procedure, and an 

inappropriate definition of search parameter 

values can lead to very poor results.  

In the literature, it can be found 

several works providing comparisons 

among different stochastic algorithms 

(Karaboga e Basturk, 2007; Karaboga e 

Basturk, 2008; Karaboga e Akay, 2009). 

More recently, Karaboga and Akay (2009) 

presented an assessment among four 

stochastic algorithms, that is, ABC, PSO, 

GA and DE, and they showed that the ABC 

algorithm led to better results and also 

presented fewer search parameters to be 

defined. However, only one set of search 

parameter values for each stochastic 

algorithm was used. Consequently, the 

search procedures cannot be precisely 

compared since better performances could 

be obtained with a different set of search 

parameter values for used in each stochastic 

algorithm. 

In this work, a comparison among 

four stochastic optimization algorithms, 

ABC, DE, PSO and SA, is presented with 

six benchmark test functions. The main 

contribution of this work is the comparison 

of the algorithms with different parameters, 

which is unseen in the literature until now. 

The parameter values and some specific 

configurations of the algorithms were 

changed, in order to evaluate their effects 

on the performance of each algorithm, 

providing a general comparison of the 

algorithms. Also the number of 

optimization variables was varied, to show 

how the performance of each algorithm was 

influenced by the problem dimension. 

Therefore, the main contributions of this 

work are to assess on the performance of 

theses algorithms with different 

configurations and with high dimensional 

problems. In the following section, each 

one of the stochastic optimization 

algorithms is presented. In Section 3, the 

benchmark test functions are presented, and 

the optimization results are presented in 

Section 4. Finally, in Section 5, we present 

the conclusions on the obtained results. 

 

2. STOCHASTIC ALGORITHMS 

 

Among stochastic algorithms 

available in literature, four algorithms were 

used in this work and their characteristic are 

briefly described below. These algorithms 

were chosen since they are commonly used 

for solving optimization problems in the 

engineering field (Babu et al, 2005; 

Ourique et al, 2002; Li et al, 2000). Particle 

Swarm Optimization, Differential 

Evolution and Artificial Bee Colony are 

population-based algorithms where a 

solution set is interacted in order to find the 

global optimum. On the other hand, 

Simulated Annealing deals with only one 

solution that evolves along iterations. 

Despite this main difference, all these 

algorithms present stochastic features and 

carry out a global optimization. 

 

2.1. SIMULATED ANNEALING 

 

The concept of the simulated 

annealing is based on the behavior of a 

metal re-crystallization in the process of 

annealing. As the temperature decreases, 

the system becomes more ordered and 

approaches a “frozen” ground state at T 

equal to 0. 

The Simulated Annealing is a 

stochastic algorithm with heuristic 

characteristics of random search, where the 

parameters are changed following 

probabilistic rules. It is important to say 

that several works are available in the 

literature, which proposed modifications to 

this algorithm originally reported by 

Kirkpatrick et al. (1983). Among them, the 

proposal of Li et al. (2000) is one of the 

most representative, where the reduction of 

the acceptance of degenerated states is 

associated to the temperature decrease.  

The Simulated Annealing 

optimization algorithm is based on the 

Monte Carlo method and replaces the 

energy by a difference between objective 

function values at two sequential points, the 

current position xk and the next solution 

candidate xk+1, where x is a vector that 

defines a particular position in the N-

dimensional space of the optimization 

variables. Therefore, through this 

adaptation, the probability of passing from 
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the state xk to a state xk+1, in a minimization 

problem, is defined as: 
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1 1
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k k k k
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
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x x

x x x x
x x

   (1) 

 

where F(xk) is the objective function at 

position xk and TA is the current annealing 

temperature. The probability calculated in 

Equation (1) is compared with a random 

number with uniform distribution in the 

range [0,1]. If the probability defined in 

Equation (1) is higher than r, the transition 

from xk to xk+1 is accepted, despite the fact 

that the objective function can be increased 

during this transition. This behavior allows 

the optimization search to escape from local 

minima and to locate the global minimum 

of the objective function. 

To induce convergence to a minimum 

value, the annealing temperature is 

decreased along the search process.The 

temperature reduction can be defined 

according to Equation (2). 
 

,    0 1A AT T= α < α <              (2) 

 

Nevertheless, as a fast cooling of a 

metal results in a structure of higher 

energetic content, an inadequate variation in 

the annealing temperature (α value near 0) 

can result in a premature convergence to a 

local minimum. It is also important initiate 

the search from a sufficiently high initial 

temperature, in order to allow a good 

exploration of the solution-space problem. 

In the original proposal (Kirkpatrick 

et al, 1983), the disturbances in the 

optimization variables are done by the 

following equation: 

 

1, , ,    1,...,k j k j j jx x r x j N+ = + ∆ =      (3) 

 

where rj is a random number with uniform 

distribution in the range [-1, 1] and ∆xj is 

the increment to the j
th

 variable of the N-

dimensional search space. Corana et al. 

(1987) presented a proposal where the 

disturbance size ∆xj should decrease in 

order to keep the ratio between accepted 

and rejected transition around 1, that is, 

about 50 % of the transitions should be 

accepted. According to this method, namely 

success ratio method, after NS iterations, 

the step ∆xj is updated as the following 

relation: 
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where c is a constant (usually cis equal to 2) 

and q is the number ratio of accepted 

configurations to the generated 

configurations number in the last NS 

iteration. This method can also be applied 

in problems with domain restriction to 

every variable, where the step ∆xj is limited 

to ( )high low

j j
x xβ − , with 0 1< ≤β , that is 

limited to a fraction of the search space. 

The pseudo-code used in this work to 

the Simulated Annealing algorithm is 

presented in the Appendix of this work and 

it is based on the works of Corana et al. 

(1987) and Goffe et al. (1994). 

 

2.2.PARTICLE SWARM 

OPTIMIZATION 

 

The Particle Swarm Optimization 

(PSO) algorithm, originally proposed by 

Kennedy and Eberhart (1985), is also a 

stochastic algorithm with heuristic features 

of random search, but that takes into 

account the best result generated in the 

current state and also the best global result. 

As it is a relatively recent algorithm, many 

reports have been pondered in the 

investigation and implementation of the 

algorithm, focusing in the process 

optimization and parameters estimation. 

Eberhart and Shi (2000) make a comparison 

between inertial weight and constriction 

factor. Brits et al. (2007) propose a strategy 

to PSO with an assured convergence. The 

investigated and implemented alternatives 

in the last years have attributed to PSO the 

potential to be applied in the global 

optimization in a wide diversity of 

problems. 

In the PSO algorithm, each individual 

solution is named as particle and the 

solution population is called swarm. 
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According to Jiao et al. (2008), a particle i 

(i = 1,..,NP), in a iteration k, is 

characterized by two features: (1) its 

position, represented by the array 

( ),1 ,, ,k k k

i i i NX x x= …  in the problem N-

dimensional space limited according to 
low high

j j j
x x x≤ ≤ , where 

j

low
x  and high

j
x  are 

the bounds of the jsearch direction (j = 

1,2,…,N); (2) its velocity, represented by 

the array ( ),1 ,, ,k k k

i i i NV v v= …  in this same N-

dimensional space of the problem. 

The position and pseudo-velocity of 

the particles are updated along the search 

iterations by the following equations: 

 

( ) ( )1

, , 1 1 , , 2 2 , ,

k k k k k k

i j i j i j i j g j i jV wV c r P X c r P X
+ = + − + −

    
(5) 

 

 1 1

, , ,

k k k

i j i j i j
X X X

+ += +                    (6) 

 

where r1 and r2 are random numbers 

uniformly distributed between [0,1] and  w, 

c1 and c2 are search parameters, called 

inertial weight, cognitive and social 

parameters respectively, that must be 

properly defined in order to control 

convergence of the particles and, 

consequently, the efficiency and robustness 

of the algorithm. The term ( )1 1 , ,

k k

i j i j
c r P X−  

represents the distance of the particle i to 

the best position reached by itself up to the 

k-th iteration. Similarly, the term 

( )2 2 , ,

k k

g j i j
c r P X−  represents the distance of 

the particle i to the best position found by 

the whole group up to the k-th iteration. The 

performance of the PSO algorithm in 

solving optimization problems is closely 

related to the definition of the search 

parameters  w, c1 and c2. These parameters 

can be defined as constants along the search 

iterations or as varying parameters as a 

function of iteration number. Nonlinear 

parameter estimation through PSO is 

presented by Schwaab et al. (2008). 

The pseudo-code to the PSO 

algorithm implemented in this work is 

based on the work of Schwaab et al. (2008) 

and is presented in the Appendix. 

 

2.3. DIFFERENTIAL EVOLUTION 

Classic DE (Price et al, 2005) begins 

by initializing a population of NP points 

represented by D-dimensional vectors with 

parameter values that are distributed with 

random uniformity between pre-specified 

lower and upper parameter bounds (
j

low
x  

and high

j
x ), according to Equation (7): 

 

( )
( ) ( )

, , (0,1). ,

1, 2,..., ,  1, 2,..., ,  0

low high low

i j g j j jx x rand x x

i NP j N g

= + −

= = =
  (7) 

 

The subscript g is the generation (or 

iteration) index, j and i are the parameter 

and population index, respectively. Hence, 

,j ix is the j
th 

parameter of the i
th 

population 

vector. The random number generator 

rand(0,1) returns a uniformly distributed 

value in the range [0, 1]. In DE, parameter 

values are encoded as ordinary floating-

point numbers and are manipulated with 

standard floating-point operators like those 

available in high level languages like C and 

FORTRAN (Price et al, 2005). 
To generate a trial solution, DE first 

mutates a vector form of the current 

population. Mutation operation can be 

performed through different strategies, 

according to Equations (8a-e). 

 

( )
1 2, , , ,i g best g p g p g

F= + −v x x x        (8a) 

 

( )
3 1 2, , , ,i g p g p g p g

F= + −v x x x       (8b) 

 

( ) ( )( )
1 2, , , , , ,i g i g best g i g p g p g

F= + − + −v x x x x x  (8c) 

 

( ) ( )( )
1 2 3 4, , , , , ,i g best g p g p g p g p g

F= + − + −v x x x x x  (8d) 

 

( ) ( )( )
5 1 2 3 4, , , , , ,i g p g p g p g p g p gF= + − + −v x x x x x  (8e) 

 

Vector indices p1, p2, p3, p4, and p5 

are randomly selected from the NP solution 

candidates, except those whose indices are 

distinct and different from the population 

index i, that is, 1 2 3 4 5p p p p p i≠ ≠ ≠ ≠ ≠ . 

The mutation scale factor, F, is a positive 

real number that is typically between 0 and 

1.0. 

Next, one or more parameter values 

of this mutant vector, ,i gv , are uniformly 

crossed with those belonging to the i
th
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population vector, ,i gx , (the target vector). 

The result is the trial vector, ,i gu
 

 

{ }

, ,

, ,

, ,

if (0,1) or ;

 otherwise

1, 2,..., .

j i g rand

j i g

j i g

rand

v rand Cr j j
u

x

j N

≤ =
= 


∈

   (9) 

 

The crossover constant, 

0.0 1.0Cr≤ ≤ controls the parameters 

fraction that the mutant vector contributes 

to the trial vector. In addition, the trial 

vector always inherits the mutant vector 

parameter with the randomly chosen index 

randj to ensure that the trial vector differs by 

at least one parameter from the vector with 

which it will be compared (that is, the target 

vector, ,i gx ). 

To keep solutions feasible when 

problems are bound-constrained, trial 

parameters that violate boundary constraints 

are set back to the violated bound, 

according to Equation (10). 

 

, , , ,

, ,

, , , ,

   if  

  if  

low low

j i g j j i g j

j i g high high

j i g j j i g j

u x u x
u

u x u x

 = <
= 

= <

  (10) 

 

If the trial vector’s function value is 

less than or equal to that of the target vector, 

the trial vector replaces the target vector in 

the next generation. Otherwise, the target 

vector remains in the population for at least 

one more generation. 

 

( ) ( ), , ,

, 1

,

 if 

 otherwise

i g i g i g

i g

i g

f
+

 ≤
= 


u u x
x

x
    (11) 

 

In DE algorithm, the selection is 

global in the sense that the base vector is 

any randomly chosen population vector 

other than the target vector. Mutation 

operation strategies defined in Equations 

(8b) and (8e) are global strategies. Global 

selection allows underperforming 

population vectors to be replaced with 

variants of the population’s better solutions. 

If, however, the base and target vectors are 

the same, as in mutation operation strategy 

defined in Equation (8c), then the selection 

is local in the sense that each vector in the 

current population is compared to its own 

mutant. When the selection is local, a 

vector’s evolution only depends on the 

current set of vector differences and not 

directly on the parameter values of vectors 

other than those of the target. In effect, 

local selection partitions the population into 

NP niches, each of which is inhabited by a 

single vector that evolves in isolation 

without the benefit of access to the 

population’s better solutions. 

 

2.4. ARTIFICIAL BEE COLONY 

 

The Artificial Bee Colony algorithm 

(ABC) is an optimization algorithm based 

on the peculiar intelligence of a bee swarm. 

In the ABC algorithm, the artificial bee 

colony has three bee groups: employer, 

scout and onlooker bees. The first half of 

the colony consists of employer bees and 

the second half of onlooker bees. For every 

food source, there is only one employer bee. 

In others reports, the number of employer 

bees is equal to the food sources. The 

employer bee of a discarded food source 

becomes a scout bee (Karaboga e Basturk, 

2008). The search performed by artificial 

bees can be described as: 

• Employer bees establish a food 

source close to its neighborhood in their 

memories. 

• Employer bees share their 

information with the neighborhood of food 

sources in their memories. 

• Onlooker bees chose a food source 

in the neighborhood of food sources chosen 

by them. 

• An employer bee whose source was 

discarded becomes a scout bee and the 

random search starts for a new food source. 

Each sequence of the search consists 

of three steps: to move the onlooker and 

employer bees to the food sources, to 

evaluate their nectar amounts, to determine 

the scout bees and then to move them on 

the food sources in a random way. A food 

source represents a possible solution to the 

problem to be optimized. The nectar 

amount of a food source corresponds to the 

solution quality represented by that food 

source. The employer bees are placed on 

the food using the wheel roulette selection 

method. Each bee colony has scout bees 

that walk around the colony. They are 
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firstly assigned to find any food source. As 

a result of their behavior, the scout bees are 

characterized by the low cost of search and 

a low quality of the food sources. 

Sometimes, the scout bees can accidentally 

find out rich food sources and completely 

unknown. In the case of artificial bees, the 

artificial scout could have a fast discovery 

of the viable solution group as a task. In the 

ABC algorithm, one of the employer bees is 

selected and classified as a scout bee. The 

classification is controlled by a control 

parameter called by “limit”. If a solution 

that represents a food source is not 

improved in a specific number of trials, 

then this food source is left by the employer 

bee and this employer bee becomes a scout 

bee. The number of trials is the same as the 

limit value, which is an important control 

parameter of the ABC algorithm (Karaboga 

e Basturk, 2008). 

As others social foragers, the bees 

search for food sources in a way that 

maximizes the rate /E T  (where E is the 

obtained energy and T is the time spent to 

the feeding). In the case of bee swarm, E is 

proportional to the nectar amount of the 

food sources found out by the bees and the 

bee swarm works to maximize the honey 

stored in the hive. In a maximization 

problem, the key point is to find the 

maximum of the objective function ( )F θ , 

p
Rθ ∈  .If 

iθ  is the position of the i-th food 

source, ( )i
F θ  represents the nectar amount 

of the food source placed in 
iθ  and is 

proportional to the energy ( )i
E θ .The term 

( ) ( ){ }1,2,...,
i

P c c i Sθ= = (c: cycle, S: 

number of food source around the hive) 

represents the population of food sources 

that are being visited by the bees (Karaboga 

e Basturk, 2008). 

As it was mentioned previously, the 

preference for a food source by an 

employer bee depends on the nectar amount 

( )F θ present in this food source. The 

nectar amount of a food source increases 

the probability of this source to become the 

favorite source by an employer bee in a 

proportional manner. Then, the probability 

of a food source placed in 
iθ is chosen by a 

bee can be expressed as:  

( )

( )
1

i

i S

kk

F
P

F

θ

θ
=

=
∑

                (14) 

After observing the employer bees 

movement, an onlooker bee selects a food 

source based on a comparison among the 

food sources around
iθ  . The position of the 

neighbor food source selected is evaluated 

as: 

( ) ( ) ( )1
i i i

c c cθ θ φ+ = ±          (15) 

where ( )i
cφ is a random step used to find a 

food source with more nectar around 
iθ . 

( )cφ is evaluated with the difference of the 

same parts of ( )i
cφ  and ( )k

cφ  (k is a 

random parameter produced) food positions. 

If the nectar amount ( )( )1
i

F cθ + in 

( )1
i

cθ + is higher than in ( )i
cθ , than the 

bee goes to the hive and shares its 

information with the others and the food 

source position ( )i
cθ is changed to 

( )1
i

cθ + , however ( )i
cθ  is preserved. 

 

3. NUMERICAL EXPERIMENTS 

 

In order to evaluate the performance 

of stochastic algorithms, some classical 

benchmark functions were tested. The 

expression, parameter search ranges and 

dimension of each benchmark function are 

presented in Table 1. All benchmark 

functions have zero as global optimum 

value. Parabolic function is continue, 

convex and unimodal. Rosenbrock function 

is commonly used in problems of function 

minimization, since it presents a high 

difficulty in convergence due to its 

gradients do not point to the optimum and 

also to the interdependence of its variables.  
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Table 1. Benchmark functions which the search range, minimum value and problem 

dimension. 

Function 

name 

Function equation Search Range Problem 

Dimension 

Parabolic ( ) 2

1

1

n

i

i

f x x
=

= ∑  

 

100 100ix− ≤ ≤  

 

30 

Rosenbrock ( ) ( ) ( )
1

2 22

2 1

1

100 1
n

i i i

i

f x x x x
−

+
=

= − + −∑  

 

50 50ix− ≤ ≤  

 

50 

Rastringin ( ) ( )( )2

3

1

10 cos 2 10
n

i i

i

f x x xπ
=

= − +∑  

 

5.12 5.12ix− ≤ ≤  

 

50 

Griewank

 

( ) ( )
2

4

1 1

1001
100 cos 1

400

nn
i

i

i i

x
f x x

i= =

 −   
= − − +    

    
∑ ∏  

 

600 600ix− ≤ ≤  

 

50 

Schaffer 
( )

( )
( )( )

2 2 2

1 2

5 2
2 2

1 2

sin 0.5
0.5

1 0.001

x x
f x

x x

+ −
= +

+ +
 

 

100 100ix− ≤ ≤  

 

2 

Ackley
 ( )

( )
2

1 1

1 10.2 cos 2

6 20 20

D D

i i
i i

x x
D D

f x e e e
π

= =

 
 −
 
 

∑ ∑
= + − −  

 

30 30ix− ≤ ≤  

 

30 

 

Rastringin, Schaffer and Griewank 

functions present many local minima that 

are regularly distributed. Ackley function 

presents many local minimum due to a 

exponential term. 

To assess the influence of the 

parameters of the stochastic algorithms 

used in this study, different configurations 

for each algorithm were used, as described 

below. The population number was also 

varied for all the algorithms, to assess its 

influence in their performance. For all the 

algorithms, a stopping criterion (maximum 

evaluation number) of 500,000 evaluations 

of the objective function was utilized. 

According to Table 2, the ratio 

between the number of onlooker and 

employers bees R and presence (wScout) or 

absence (wtScout) of scout bees were 

evaluated in this study for the ABC 

algorithm. All configurations were 

evaluated for a population size (Nbee) of 20, 

60 and 100 and the limit parameter was set 

as the number of employers bees times the 

problem dimension. 

In DE algorithm, the scale mutant 

factor F is a real constant, which affects the 

differential variations between two 

solutions. Higher F means larger and 

smaller exploitation ability. Therefore, a 

value of F which is too small can cause the 

population to converge to the minimum too 

soon and it also causes the difficulty to 

jump out of a local minimum. 

 

Table 2. Evaluated configurations for the 

ABC algorithm. 

Configuration 

Number 

Evaluated 

Parameters 

R Scout 

1 0.5 wScout 

2 0.5 wtScout 

3 1.0 wScout 

4 1.0 wtScout 

5 2.0 wScout 

6 2.0 wtScout 

 

So, as suggested by Wang and Huang 

(2010), F was equal to 0.5 in this study. The 

crossover rate constant value (CR), which 

controls the change of the population 

diversity, was set to 0.8. It is used to adjust 

the weight between the history and the 

current selection operation. Higher CR may 

fasten the convergence speed and make the 

evolution process be trapped in a local 

minimum (Wang e Huang, 2010). In this 

study, all configurations were evaluated for 

a population size (NP) of 20, 50 and 100. 

Different mutation strategies, as it can be 
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seen in Table 3, were evaluated for this 

algorithm. 

 

Table 3. Evaluated configurations for the 

DE algorithm 

Configuration 

Number 

Mutation 

Strategy 

1 Equation (8a) 

2 Equation (8b) 

3 Equation (8c) 

4 Equation (8d) 

5 Equation (8e) 

 

For the SA algorithm all 

configurations were evaluated for a 

population size (NT) of the 20 and 100. The 

temperature reduction rate α and the 

annealing temperature TA were assessed 

according to Table 4. Both these parameters 

are relevant in the SA algorithm 

performance. The annealing temperature 

influences the probability of acceptance of a 

new state, as it can be seen in equation (2). 

As it was pointed out in section 2.1, a 

higher temperature reduction rate can make 

the convergence faster but sometimes it can 

result in a premature convergence to a local 

minimum. 

 

Table 4. Evaluated configurations for the 

SA algorithm. 

Configuration  

Number 

Evaluated 

Parameters 

α TA 

1 0.50 0.1 

2 0.50 10 

3 0.50 1000 

4 0.85 0.1 

5 0.85 10 

6 0.85 1000 

 

In PSO algorithm, the cognitive (C1) 

and social (C2) components are constants 

that can be used to change the influence 

between the individual and population 

experience, respectively (Kennedy and 

Eberhart, 1995). Inertia weight is used to 

determine how the previous velocity of the 

particle influences the velocity in the next 

iteration. Since the performance of the 

algorithm is strongly influenced by its 

values, these parameters were chosen to be 

investigated in this work. A list of the 

different configurations tested for this 

algorithm can be found in Table 5. All 

configurations were evaluated with a 

particle number (Npt) of 20, 60 and 100. 

Each algorithm configuration was 

simulated 40 times and in order to compare 

them, the median of objective function 

values was used since it is statistically more 

robust than the mean value, when some 

outliers values are present. 

Table 5. Evaluated configurations for the 

PSO algorithm. 

Configuration  

Number 

Evaluated 

Parameters 

W C1,C2 

1 0.60 1.0 

2 0.60 1.5 

3 0.60 2.0 

4 0.75 1.0 

5 0.75 1.5 

6 0.75 2.0 

7 0.90 1.0 

8 0.90 1.5 

9 0.90 2.0 

 

3. RESULTS AND DISCUSSION 

 

This section presents the 

minimization results obtained with the four 

stochastic algorithms used with different 

parameter configurations, followed by a 

comparison among them with their best 

parameter values. Finally, performance 

algorithms in the minimization of a high 

dimension problem is also presented and 

discussed. 

 
3.1 BENCHMARK FUNCTION 

RESULTS 

 

Figure 1 shows the results of the 

stochastic algorithms studied for the 

optimization of the Ackley function. The 

ABC algorithm achieved median values for 

the objective function near to zero for all 

their configurations, independent of the 

initial population. It may be an indicative 

that random initial population, the 

algorithm is able to find the global 

minimum. For the DE algorithm, the 

strategies 1 and 3 achieved the best values, 

reaching values equal to zero for the 
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objective function. The minimization with 

other strategies showed worse results, 

independent of the population number.  

This can be due to a greater influence of 

mutation strategy compared to the 

population number. The SA algorithm with 

configurations 1, 2 and 3 showed 

satisfactory results with NT=20. However, 

with NT=100, the objective function values 

were significantly higher. In configuration 

4, with NT=20, values between 1x10
-1

 and 

1x10
-2

were achieved; while for NT=100, 

the objective function values were more 

distant from the global optimum (zero). The 

results obtained in configurations 5 and 6 

were worse than the other configurations. It 

can be pointed out that a lower α  

(configuration 1, 2 and 3) provided better 

results. However, for high values of TA 

and α , the algorithm faced difficulties to 

converge to the global optimum. In a 

general way, we can say that the 

temperature reduction rate was more 

influent in the SA performance in the 

minimization of the Ackley function. For 

the PSO algorithm, the configurations 3 and 

7 provided values of the objective function 

equal to zero. With configuration 5, the 

global optimum was achieved with Npt = 

60 and Npt = 100. It can be noted that the 

values reached with configurations 3 ,5 and 

7 are associated with a balance between the 

C1, C2 and w parameters of the algorithm, 

that is, increasing the value of w would be 

associated with a decrease in the values of 

C1 and C2. 

 
(a) ABC 

 
(b) DE 

 

(c) SA 

 
(d) PSO 

Figure 1. Ackley function median for the 

stochastic algorithms: (a) ABC; (b) DE; (c) 

SA; (d) PSO. 

 

The results of the stochastic 

algorithms studied for optimization of the 

Griewank function are presented in Figure 2. 

It can be verified that the ABC algorithm 

reached objective function values equal to 

zero for all its configurations, with only a 

little difficulty in convergence with a 

population number of 100. The DE 
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algorithm with the mutation strategies 1 and 

3 achieved the global minimum of the 

function. The configurations 2, 4 and 5 

provided worse results. In all of these cases, 

it can be said that the DE performance was 

generally disfavored by the population 

number, since in order to kept total number 

of function evaluations constant, the 

number of iterations is decreased. 

Consequently, it seems that an increase of 

the number of iterations provides better 

results than an increase of population 

number. For the SA algorithm, the best 

performances were obtained with 

configurations 1, 2 and 3, which 

corresponds to the lowest value of the 

temperature reduction parameter α. This 

can be explained by the fast cooling 

associated with the low value of this 

parameter, a similar result obtained with the 

Ackley function. It can also be noted from 

Figure 2 that for NT = 100, the minimum 

achieved by this algorithm is higher than 

with the annealing temperature. The results 

obtained with the PSO algorithm for the 

Griewank function are similar to the results 

obtained with the Ackley function. The best 

results for PSO were obtained with 

configurations 3, 5 and 7. It is worth to 

point out that the best performance was 

reached with a lower inertial weight factor 

and high values for the cognitive and social 

parameters, which means that the individual 

and collective memory of the particles 

seems to be more relevant than the 

influence of the previous velocity. 

 

 
(a) ABC 

 
(b) DE 

 
(c) SA 

 
(d) PSO 

Figure 2. Griewank function median for the 

stochastic algorithm a) ABC; b) DE; c) SA; 

d) PSO with different configurations and 

population number. 

 

Figure 3 illustrates the results for the 

use of the stochastic algorithms for 

optimization of the parabolic function. The 

results obtained with ABC algorithm were 

near to zero for all configurations tested. It 

can only be noted from Figure 2 that for 

some configurations, the population size of 

20 provided the worst results. The best 
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performance of DE algorithm was verified 

in configurations 1 and 3. The influence of 

the population number can be seen in 

configuration 5 that presented the highest 

value of the objective function median. For 

the SA algorithm, the results indicate that 

the results are improved with a low 

α .However, when T increases, the results 

worsen. This is the same behavior for the 

Ackley function. With better values ofα , 

the efficiency rises while the robustness 

decreases, even though the function 

presents only one minimum. As it can be 

noted from the previous Figures, the 

configurations for the PSO algorithm that 

provided the best results were the 

configurations 1, 3 and 7. 

 

 
(a) ABC 

 
(b) DE 

 
(c) SA 

 
(d) PSO 

Figure 3. Parabolic function median for the 

stochastic algorithm a) ABC; b) DE; c) SA; 

d) PSO with different configurations and 

population number. 

 

Figure 4 shows the results of the 

stochastic algorithms studied for the 

optimization of Rastrigin function. The 

ABC algorithm was the only one that 

achieved the global minimum of this 

function, which is hardly multimodal. As 

the results obtained in the previous 

functions, the DE algorithm presented 

better results with the mutation strategy 1 

and 3. But, this algorithm presented more 

difficulty in the minimization of the 

Rastrigin function, resulting in a worse 

performance compared to the other 

functions. The performance of SA and PSO 

algorithms was significantly poor. However, 

it should be emphasized that the influence 

of the annealing temperature was higher 

than the temperature reduction factor for 

this function, which was the opposite 

behavior compared to the one observed in 

the previous benchmark functions. 
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(a) ABC 

 
(b) DE 

 
(c) SA 

 
(d) PSO 

Figure 4. Rastrigin function median for the 

stochastic algorithm a) ABC; b) DE; c) SA; 

d) PSO with different configurations and 

population number. 

 

The results for the Rosenbrock 

function are shown in Figure 5. The ABC 

algorithm showed a good performance for 

all configurations. It should be pointed out 

that the population size of 60 used in this 

work achieved a better result than Karaboga 

and Basturk (2008) with a population size 

of 100. The better results obtained with the 

DE algorithm were with the configurations 

1 and 3, with the population size of 20, 

reaching the global minimum of this 

function. The SA algorithm showed similar 

performance to the previous functions. 

With high values of α and low values of TA 

the results were satisfactory. The results of 

the PSO algorithm for all configurations 

were not good. 

 
(a) ABC 
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(b) DE 

 
(c) SA 

 
(d) PSO 

Figure 5. Rosenbrock function mean for 

the stochastic algorithm a) ABC; b) DE; c) 

SA; d) PSO with different configurations 

and population number. 

 

Figure 6 shows the results of the 

stochastic algorithms studied for 

optimization of the Scheffer function. For 

the ABC, DE and PSO algorithms, almost 

all configurations reached the global 

minimum of this function. Only the SA 

algorithm was trapped in a local minimum 

for all of its configurations. 

It can be pointed out that the 

algorithm performances are dependent on 

their parameters. If adequately used, they 

are generally able to reach the global 

minimum, independent of the benchmark 

function. The ABC and DE algorithms 

showed to be more robust and efficient than 

the others (SA and PSO). 

 

 
(a) ABC 

 
(b) DE 

 
(c) SA 
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(d) PSO 

Figure 6. Scheffer function median for the 

stochastic algorithm a) ABC; b) DE; c) SA; 

d) PSO with different configurations and 

population number. 

 
3.2 COMPARISON OF THE 

STOCHASTIC ALGORITHMS 

 

As it can be seen in Figures 1-6, the 

performance of the algorithms 

configurations was similar for all the 

benchmark functions tested. From this 

observation, it was possible to determine 

the best configurations of the stochastic 

algorithms studied, which are listed in 

Table 6. 

 

Table 6. Best configurations of the studied 

stochastic algorithms. 

 

Algorithm 

Best Configurations 

Configuration 

Number 

Population 

Size 

ABC 3 60 

DE 3 50 

SA 3 20 

PSO 5 60 

 

In order to make a more systematic 

comparison, the performance of the 

algorithms was compared, for each 

benchmark function, with a stop criterion of 

500 000 evaluations of the objective 

function. The results of the median values 

of the objective function as a function of the 

number of evaluations are shown in Figure 

7. 

 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

 
(f) 

Figure 7.  Profiles of the objective function 

minimization with the best configurations 

of stochastic algorithms with a) Ackley; b) 

Griewank; c) Parabolic; d) Rastrigin; e) 

Rosenbrock and f) Scheffer. 

 

It can be seen from Figure 7a that DE 

algorithm could reach global optimum in 

less iterations compared to the other 

algorithms and that SA algorithm could not 

achieved the global optimum. A similar 

behavior can be observed Figures 7 (b) and 

(c). In Figure 7(d), PSO algorithm 

presented a better performance compared to 

the other algorithms, both in the number of 

iterations to achieve the global optimum 

and in the final value of objective function. 

The results in Figure 7(e) show that DE 

algorithm outperformed on the other 

algorithm in a similar manner. In Figure 7 

(f), SA algorithm presented great difficult 

to minimize Scheffer function, while PSO 

and DE algorithms performed better. 

Therefore, in a general way, as it can 

be seen in the Figure 7, the stochastic 

algorithm with best performance with the 

benchmark functions tested was the 

Differential Evolution algorithm with the 

mutation strategy 3 and population size 

equal to 50. It should be noted that only the 

DE algorithm was able to minimize the 

Rosenbrock function to the global 

minimum, as it is shown in Figure 7e. 

However, it is also worth to point out that 

the ABC algorithm showed a good ability 

to reach the global minimum of multimodal 

functions, like the Rastrigin function, while 

the other algorithms could not achieve the 

global minimum. The PSO algorithm 

reached good results when used with its 

best configuration, also showing ability to 

achieve the global minimum. The 

Simulated Annealing algorithm exhibited 

the worst performance, since it could only 

converge to the global minimum when the 

Ackley function was tested. From the 

results discussed above, the Rosenbrock 

function presented more difficulty to the 

evaluated algorithms, since only DE 

algorithm could achieve a value very close 

to the global optimum. 

 
3.3 EVALUATION OF THE 

STOCHASTIC ALGORITHMS AT 

HIGH DIMENSIONAL PROBLEMS 

 

To assess the performance of the 

stochastic algorithms in high dimension 

problems, the Rosenbrock function with 

dimension of 100 and 500 was minimized 

with the four algorithms investigated in this 

work, with their best configurations. A 

stopping criterion of 5,000,000 objective 
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function evaluations was utilized for all the 

minimizations. The variation of the 

objective function median as a function of 

the number of evaluations for the different 

dimensions tested is shown in Figures 8 and 

9. 
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Figure 8.  Profile of the Rosenbrock 

function minimization with dimension of 

100. 
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Figure 9.  Profile of the Rosenbrock 

function minimization with dimension of 

500. 
 

The DE algorithm did not have 

difficulties in achieving the global 

minimum of the Rosenbrock function with 

dimension equal to 100, and it needed 

approximately 1,500,000 objective function 

evaluations to reach a 10
-26 

median value. 

The ABC algorithm reached values in order 

of 10
-2

. The PSO and SA algorithms, even 

after the five million of evaluations of the 

objective function, failed to converge to the 

global minimum of the function. 

Moreover, it can be seen in Figure 9 

that all the stochastic algorithms failed to 

converge for the global minimum of the 

Rosenbrock function with dimension of 500. 

The only algorithm that could reach 

objective function values below 1x10
0
 was 

the ABC algorithm. Therefore, this 

algorithm showed greater potential to be 

successfully used in complex and 

multimodal problems, with high dimensions. 

 

4. CONCLUSIONS 

 

In this paper, four stochastic 

algorithms were implemented and 

evaluated: DE, PSO, SA, and ABC. 

Classical test functions presented in the 

literature were used to evaluate the 

performance of algorithms at different 

configurations. 

In general, the performance of all the 

algorithms was satisfactory. The stochastic 

global optimization methods were excellent 

tools in minimizing unimodal and 

multimodal functions, presenting easy 

implementation with a few internal 

parameters to change and robustness. 

The DE algorithm stands out for its 

superior performance when compared to the 

other algorithms. The results showed that 

there is a strong dependence on the 

mutation strategy, which is the main 

parameter procedure of this algorithm. The 

ABC algorithm was an efficient method of 

minimization of functions, although less 

efficient than the DE algorithm. It could 

minimize the Rastrigin function with only a 

few iterations. The main advantage is that it 

does not need configuration of too many 

internal parameters. In general, the SA and 

PSO algorithms presented worse 

performances compared to DE and ABC 

algorithms. 

In relation to the high dimension 

problems, the ABC algorithm showed a 

higher probability of being successfully 

used in multimodal and complex problems 

of large dimensions, such as problems 

associated with dynamic optimization. 
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