Use of Fe2O3-TiO2 in solar photo-Fenton process for the phenol degradation

Jerlan Alves da Silva, Gessyca Borges dos Santos, Vivian Stumpf Madeira, Maria Luisa de Almeida Ramalho, Islanny Larissa Ouriques Brasileiro, Arthur Marinho Cahino

Resumo


In this work a Fe2O3-TiO2 catalyst, at the proportion 60:40 (%mass), was produced using a modified Pechini method. The catalyst was characterized and used in the degradation of phenol in aqueous solution through a solar photo-Fenton reaction. Experiments were performed varying the concentration of H2O2, catalyst, phenol, and pH of the aqueous solution, in order to determine the reaction rate and propose a mechanism. Characterization showed the presence of Fe2O3 and anatase and rutile phases of TiO2. Pseudobrookite (Fe2TiO5) was also found in the material.   The Fe2O3-TiO2 catalyst presented higher efficiency (90% of phenol removal) and degradation rate than the two isolated oxides in the process photo-Fenton heterogenous in optimum conditions. The proposed mechanism shows that the union of the two oxides, Fe2O3 and TiO2, facilitates the reduction and oxidation reactions of Fe+ 2/Fe+ 3 and Ti+4/Ti+3, increasing the amount of surface OH groups and consequently the catalytic activity.


Texto completo:

PDF

Referências


AKHAVAN, O., AZIMIRAD, R. 2009. Photocatalytic property of Fe2O3 nanogran chains coated by TiO2 nanolayer in visible light irradiantion. Applied Catalysis A: General 369:77-82. https://doi.org/10.1016/j.apcata.2009.09.001.

AMBATI, R., COGATE, P. R. 2017. Photocatalytis degradation of Acid Blue 80 using iron doped TiO2 catalyst: Understanding the effect of operating parameters and combinations for synergism. Journal of Water Process Engineering 20:217-225. https://doi.org/10.1016/j.jwpe.2017.11.005

BOKARE, A. D., CHOI, W. 2014. Review of iron-free fenton-like systems for activating H2O2 in Advanced oxidation Processes, journal of Hazardous Materials 275:121-135. https://doi.org/10.1016/j.jhazmat.2014.04.054

CONG, Y., LI, Z., ZHANG, Y., WANG, Q., XU, Q. 2012. Synthesis of α-Fe2O3/TiO2 nanotube arrays for photoelectro-Fenton degradation of phenol. Chemical Engineering Journal 191:356– 363. https://doi.org/10.1016/j.cej.2012.03.031

DOUMIC, L. I., SOARES, P. A., AYUDE, M. A., CASSANELLO, M., BOAVENTURA, R. A. R., VILAR, V. J. P. 2015. Enhancement of a solar photo-Fenton reaction by using ferrioxalate complexes for the treatment of a synthetic cotton-textile dyeing wastewater. Chemical Engineering Journal 277:86-96. https://doi.org/10.1016/j.cej.2015.04.074.

DU, Y., ZHAO, L., ZHANG, Y. 2014. Roles of TaON and Ta3N5 in the visible-Fenton-like degradation of atrazine. Journal of Hazardous Materials 276:55-61. https://doi.org/10.1016/j.jhazmat.2013.12.042

LIANG, C., LIU, Y., LI, K., XING, S., MA, Z., WU, Y. 2017. Heteroheneous photo-Fenton degradation of organic pollutants with amourphous Fe-Zn-oxide/hydrochar under visible light irradiation. Separation and Purification Technology 188:105-111. https://doi.org/10.1016/j.seppur.2017.07.027.

LI, J., LIU, Z., WANG, D., ZHU, Z. 2014. Materials Science in Semiconductor processing 27: 950-957. Visible-light responsive carbon-anatase-hematite core-shell microspheres for methylene blue photodegradation. https://doi.org/10.1016/j.mssp.2014.08.038.

M. P. Pechini, US Patent 3.330.697 (1967).

MAHADIK, M. A., SHINDE, S. S., MOHITE, V. S., KUMBHAR, S. S., MOHOLKAR, A. V., RAJPURE, K. Y., GANESAN, V., NAYAK, J., BARMAN, S. R., BHOSALE, C. H. 2014. Visible light catalysis of rhodamine B using nanostructures Fe2O3, TiO2 and TiO2/Fe2O3 thin films. Journal of Photochemstry and Photobiology B: Biology 133: 90-98. https://doi.org/10.1016/j.jphotobiol.2014.01.017.

MENDONÇA, V. R., LOPES, O. F., FREGONESI, R. P., GIRALDI, T. R., RIBEIRO, C. 2014. TiO2-SnO2 heterostructures applied to dye photodegradation: The relationship between variables of synthesis and photocatalytic performance. Applied Surface Science 298:182-191. https://doi.org/10.1016/j.apsusc.2014.01.157

MISHRA, M., CHUN, D. 2015. α-Fe2O3 as a photocatalytic material: A review. Applied Catalysis A: General 498:126-141. https://doi.org/10.1016/j.apcata.2015.03.023

PENG, L., XIE, T., LU, Y., FAN, H., WANG, G. 2010. Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts. Physical Chemistry Chemical Physics 12:8033-8041

SARAVANAN, P., PAKSHIRAJAN, K., SAHA, P. 2009. Degradation of phenol by TiO2-based heterogeneous photocatalysts in presence of sunlight. Journal of Hydro-environment Research 3:45-50.

VIRARAGHAVAN, T., ALFARO, F. L. 1998. Adsorption of phenol from wastewater by peat, fly ash and bentonite. Journal of Hazardous Materials 57: 59-70. https://doi.org/10.1016/S0304-3894(97)00062-9

XU, P., ZENG, G. M., HUANG, D. L., FENG, C. L., HU, S., ZHAO, M. H., LAI, C., WEI, Z., HUANG, C., XIE, G. X., LIU, Z. F. 2012. Use of iron oxide nanomaterials in wastewater treatment: A review. Science of The Total Environment 424:1-10. https://doi.org/10.1016/j.scitotenv.2012.02.023

ZAZO, J. A., CASAS, J. A., MOHEDANO, A. F., GILARRANZ, M. A., RODRÍGUEZ, J. J. 2005. Chemical pathway and kinetics of phenol oxidation by Fenton’s reagent. Environmental Science and Technology 1;39(23):9295-302.

ZENG, G. M., LI, X., HUANG, J. H., ZHANG, C., ZHOU, C. F., NIU, J., SHI, L. J., ELE, S. B., LI, F. 2011. Micellar-enhanced ultrafiltration of cadmium and methylene blue in synthetic wastewater using SDS. J Hazard 185(2–3):1304–10.




DOI: https://doi.org/10.22409/engevista.v20i5.13332

Apontamentos

  • Não há apontamentos.