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Abstract: Single-bubble sonoluminescence (SBSL) is a light-emission event from a stably oscillating bubble 
trapped at the pressure anti-node of a standing ultrasound wave, a phenomenon that has been studied 
intensively for a decade [1]. Using ceramic piezoelectric transducers PZT, we are able to irradiate a liquid 
inside a resonator flask by means of an ultrasound wave, and we eventually capture a bubble inside a restricted 
domain in the aqueous medium. The trapped bubble will expand and collapse at an accelerated rate, emitting 
light. To capture the bubble we perform some experiments using differently sized and shaped piezoelectric 
transducers, and we manage to verify their capacitance and impedance behavior in our sonoluminescence 
circuit. Our experiments were performed at Laboratory of Experimental and Applied Physics (LaFEA) at 
CEFET-RJ.
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1. INTRODUCTION

Sonoluminescence (SL) is one of the most 
fascinating phenomena studied in the past few 
years. It may be the world’s most nonlinear oscil-
lator as well as the world’s most effective means of 
spontaneously focusing energy [2]. To reproduce 
the phenomenon of SL we need to implement a 
certain frequency (range of 20 kHz to 35 kHz), 
called resonance frequency. This frequency will be 
applied in the resonator, which is a quartz flask 
container filled with the liquid medium that will 
be irradiated [3]. 

Fig. 1 illustrates a typical experimental setup 
for generating SBSL. A piezoelectric synthesizer 
drives PZT’s, mounted to a water-filled acoustic 
levitation cell, is driven to set up a standing wave 
within the water. The drive frequency depends 

on the size and geometry of the levitation cell 
or resonator (which can be spherical, cylindrical, 
or even rectangular) [4]. The water is typically 
degassed to about 10% of saturation. A bubble 
is introduced by injecting air through a syringe 
into the water. The bubbles rise to the surface, 
while the small bubbles are attracted to pressure 
antinodes. The final size of the remaining bubble 
at the antinode depends on gas diffusion steady 
state conditions and instabilities present: if the 
bubble is too small, gas will transport into the 
bubble; if the bubble is too large, small micro 
bubbles will be ejected from the main bubble. In 
this manner, the final bubble comes into a diffu-
sive steady state. Once the bubble is positioned 
at the pressure antinode, the drive pressure am-
plitude is increased until sonoluminescence is 
observed [5].



50 ENGEVISTA, V. 12, n. 1. p. 49-57, junho 2010

Figure 1 - Basic experimental scheme, a function 
generator, an amplifier, the variables coils, the 
resonator and the piezoelectric (PZT), and, in 

addition, the oscilloscopes

In this work, we calculate the variation 
of the inductance and the capacitance when 
the bubble was captured for a variety of PZT’s. 
Therefore, knowing the resonant frequency and 
the above mentioned data we are able to match 
sonoluminescence.

Table 1 - Specifications of the piezo-electric transducer

Types of
Resonators

Volume 
(ml)

Types of
PZT

PZT
Dimensions 

(mm)

Curie
Temperature 

(oC)

Dielectric 
Constant 
(nF/m)a

Capacitance 
(nF)b

Indutance 
(µH)c

Spherical 100  PIC140 10.0 x 1.0 330 1200 1668.0 0.23

Spherical 250  PIC141 15.0 x 3.0 275 1300 1355.2 0.28

Spherical 100  PIC155 18.0 x 4.0 345 1500 1688.8 0.23

Cylindrical 100  PIC 151 20 x 10 x 4 250 2100 1167.6 0.33
a  Datasheet of your transducers [6].
b   where d is the diameter, h is the thickness and e is the dielectric constant of a transducer .

c   where f is the resonance frequency (calculated by Eqn. (17)).

2. MATERIAL USED

To trigger SL, we will use a sine wave audio 
generator; a power amplifier (40 W ~ 1500 W); 
piezoelectric transducers (specified at Table 1); 
resonance quartz chamber; inductors (10 to 40 
mH); oscilloscopes; a multi-meter. We use four 
kinds of small necks resonators, as shown in figure 
2, with different PZTs sizes attached on them. 

Figure 2 - The photography of the cylindrical 
and spherical resonators flasks at 100 ml  

and 250ml

The resonance chamber is a simple open 
ended Plexiglas chamber. Depending on shape or 
size, a corresponding resonant frequency is to be 
matched. Conversely, one of the technical prob-
lems in generating sonoluminescence is provid-
ing a chamber that will resonate at a very specific 
accessible frequency. We are working with two 
different kinds of resonators: spherical and cylin-
drical. The mathematical approach that we now 
present is meant to roughly indicate how to select 
the frequency in the given resonator and how to 
obtain the phenomenon. 

The general wave form is a solution to the 
following equation:
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This is known as the wave equation which 
relates the Laplacian operator of a function that is 
dependent upon x, y, z and t, to a second partial 
derivative of the function with respect to t. The 
proportionality constant relating the 2nd spatial 
derivative to the 2nd time derivative determines 
the speed of the wave (c). In order to solve the 
wave equation, we assume the solution to be vari-
able separable:

 )()()()(),( tWzZyYxXtxf =  		 (2)

Plugging Eqn.(2) into the wave equation, 
Eqn.(1), leads to Eqn.(3). Putting apart time and 
spatial dependence on opposite sides of the equa-
tion leads to:

 (4)

The left side of this equation only depends 
on X, Y and Z while the right side only depends 
on W. Therefore, we conclude that both sides of 
the equation are equal to a constant –ω2. For the 
time being, we are only concerned with the posi-
tion dependent term and the time dependent term 
can be disregarded. Rearranging Eqn.(4) and, for 
convenience, introducing a new constant k

n
 given 

by Eqn.(5), we have:

 				    (5)

 (6) 

As we take 2
nk  = 2

xk  + 2
yk  + 2

zk , we may 
further rearrange Eqn. (6) to isolate the differen-
tial for each coordinate, arriving at:

 			   (7)

From Eqn.(7) we obtain a function whose 
second spatial derivative is proportional to the 
function itself, with a relative sign change. The 
general solution for this type of differential equa-
tion is given by: 

 ]sin[]cos[)( xkBxkAxX xx +=  	 (8)

Once the general solution to the wave func-
tion has been obtained, the boundary conditions 

must be considered. We set up a system where the 
wave is confined in the region 0 < X < L

x
, exhibit-

ing nodes at the boundary points. Consequently, 
the cosine term drops out and we get the constant 
k

x
 constrained in such a way that when x equals 

L
x
, the term within the sine function will be an 

integer times π, making the sine term equal to 
zero at X = L

x
. 

The positive integer N
x
 corresponds to the 

number of anti-nodes (Fig. 3). For the confined 
wave pattern, every wave must present at least 
one anti-node and therefore N

x 
is not allowed to 

equal zero.

 			   (9)

Figure 3 - Description of the positive integer 
N

x
 =1 to 3; N

x
 is regarded as a counter for 

the number of anti-nodes exhibited by the 
corresponding wave mode

The wave solution then becomes:

 			   (10)

Solving the above equation for the resonant 
frequency for this type of wave:

 	  			   (11)

				    (12)

			  (13)

The Resonant frequency for a standing 
wave in a rectangular cell:

 	 (14)

Here c stands for the speed of sound 
through water and N stands for the number of 
nodes in the x, y and z directions. Only one 
node is needed in each direction; however we 
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chose N
Z
 to be 2 for future studies in multi-

bubble SL [7].
For the cylindrical cell, a similar argument 

can be used, this time in (r, φ) coordinates (we use 
φ rather than θ here because of its parallel role in 
the spherical case, to be discussed shortly). 

The wave equation in polar coordinates can 
be written: 

 		  (15)

Separation of variables gives a radial equa-
tion called Bessel’s equation; the solutions are 
called Bessel functions [8]. The boundary con-
ditions that represent the confinement of wave 
modes inside the cylindrical resonator impose a 
null solution for r = a - radius of the cylinder - and 
for two values of z, z = 0 and z = L, say, locating 
on the “caps” of the cylinder. As commented on 
for rectangular symmetry, the boundary condi-
tions shall lead to a discrete spectrum and a cor-
responding set of resonant frequencies.

Finally, let us consider elastic waves on the 
surface of a sphere, such as an inflated spheri-
cal bubble. The natural coordinate system here 
is spherical polar coordinates, with θ measuring 
latitude, but counting the North Pole as zero, the 
South Pole as π. The angle φ measures longitude 
from some agreed origin.

The wave equation in spherical coordinates 
can be written: 

 (16)

Again, this wave equation is solved by sepa-
ration of variables. The time-independent solu-
tions are called the Legendre functions [9]. They 
are the basis for analyzing the vibrations of any 
object with spherical symmetry. Eventually, one 
should impose the boundary conditions that rep-
resent the confinement of wave excitations inside 
the resonator, leading to a null value of the solu-
tion for r = a, where a is the radius of the sphere. 
Again, a discrete collection of standing modes de-
fines the set of resonant frequencies.

3. EXPERIMENTAL PROCEDURE

A function generator is needed to supply 
the correct frequency for the apparatus and, as 

the initial source of power; it has to ensure a high 
level of precision. Due to the strong sonic pressure 
needed for this experiment, an audio power am-
plifier is used to boost the signal from the func-
tion generator of 250 W or internal impedance 
matching capabilities.

The PZT is made up of a special type of 
ceramic which, when an AC voltage is applied to 
it, will expand or contract depending on the di-
rection of current through the ceramic. Thus, it 
will generate a sound wave. Conversely, from a 
varying pressure mode income we obtain an elec-
trical signal. As a result of this physical property, 
we use PZT like the driving element of the sys-
tem when attached to a resonator or being used 
as a hydrophone, on the top of the resonator. At-
taching the PZT to the resonator can be a hard 
task to cope with. Every PZT presents a critical 
temperature known as a Curie point at which the 
ceramic will depolarize and no longer preserve its 
functional properties. These temperature values 
are described in table 1. 

Another fact that should be observed while 
working with piezoelectric transducers is their 
parasite effects. Examining the equivalent circuit 
of the PZT manufacturers, we verified that the 
predominant effect in our experimental setup is 
the capacitive one, which can cause a great loss 
in power on the system. As we need a higher 
voltage and current, it is important to avoid this 
loss without damaging the circuit [10]. There-
fore, we construct an alternative RLC circuit 
which makes the inductor cancel the capacitive 
reactance.

4. MATCHING THE CAPACITANCE AND 
THE IMPEDANCE

The PZT acts like a very inefficient capaci-
tor. This capacitor has some impedance that will 
take power away from the rest of the system. To 
minimize this problem, an inductor must be in-
serted to cancel out this impedance, as in a basic 
RLC circuit. 
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Figure 4 - The impedance circuit of the two 
PZT´s attached to the resonators. Z is the 

equivalent impedance of Z
1
 and Z

2

 
In order to maximize the power output 

of the apparatus, the resonant frequency of the 
RLC circuit must match the other resonant fre-
quencies. The amount of inductances (L) needed 
for the circuit board can be calculated from the 
known resonant frequency, Eqn.(17), and the ca-
pacitance (C) of the PZT (table 1):

 (17)

The main idea of our measurement is to 
analyze the behavior of the PZT that is connected 
to the resonator. Therefore, we need to determine 
the PZT capacitance and the impedance of the 
system following the frequency variation, until 
the phase is matching. For the capacitance mea-
surements, we fixed a value for the frequency and 
changed the value of inductance to match the 
resonance. Knowing the inductance we can calcu-
late the capacitance value using Eqn.(17). For the 
impedance measurements, we have two possible 
strategies to adopt:

1) Knowing the values of C
1
, C

2
, L

1
 and R

1
 

(Fig. 4), we can calculate the impedance Z as fol-
lows:

 (18)

 
C

1
 is the material elasticity, C

2
 is capacitance be-

tween the terminals, L
1
 is the vibrational mass 

of the quartz and R
1
 is the intrinsic loss of the 

system.
2) Building the circuit sketched in Fig. 5; 

to obtain the impedance values we fixed the fre-
quency and voltage in the circuit and we varied 
the resistance to accomplish in the two channels 
of the oscilloscopes until the voltage in the cir-
cuit drops to half the original value. This means 
that the resistor had the same impedance as the 
PZT. In Fig. 5, XFG1 is the function generator; 
U

1
 the amplifier, XSC1 the oscilloscope, while 

R
2
 is an adjustable resistance to the amplifier 

gain and R
1
 is a resistive decade from which the 

module of impedance and resistance can be read. 
The R

1
 ranges from the 0Ω to 1MΩ with step 

of 1Ω and error of 0.5% per resistor. Also, X
1
 is 

the equivalent C
1
 and C

2
 PZT´s attached to the 

resonator.
For the capacitance behavior, we construct-

ed the experimental setup of Fig. 6, and we varied 
the frequency until the phase is matching. In Fig. 
6, XFG1 is the function generator; U

1
 the ampli-

fier, XSC1 the oscilloscope, while R
1
 = 1 Ω R

2
 = 

1 MΩR
3
 = 10 kΩ and R

4
 varies from 1 Ω to10 

Ω resistances employed to control the amplifier 
power and L

1
 varies from 10 to 40 mH. Also, X

1
 

is the equivalent C
1
 and X

2
 the C

2
 PZT´s attached 

to the resonator.
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Figure 5 - The experimental setup to determine 
the PZT impedance module versus the 

frequency until the phase matching

Figure 6 - The experimental setup to determine 
the PZT capacitance versus the frequency until 

the phase matching

5. RESULTS

The idea of the SL apparatus is to create 
a three dimensional acoustic standing wave in-
side a resonance chamber strong enough to trap 
a single bubble at a known position and force it 
to collapse [11]. To provide this apparatus with 
a proper performance at its maximum capability, 
all the resonant frequencies of the three elements 
must be matched as precisely as possible.

Most of the difficulty in building this device 
is associated to gauging the resonance frequencies 
towards matching. Because it is almost impossible 
to match all exactly, the audio amplifier must be 
strong enough to overcome any small difference 

in frequencies. Another fact that drives some at-
tention is how to minimize the PZT effect in or-
der to capture the bubble at the very center of the 
resonator, favoring a subsequent light emission. 

For this matter, we performed some inde-
pendent evaluations of the PZT behavior, mea-
suring the impedance and the capacitance of each 
one separately and in parallel.
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Figure 7 - The experimental measurements for 
the PIC 140 PZT attached to the 100ml spherical 
resonator: a) shows the capacitance value for the 

right and left PZT as a function of the frequency; b) 
reassess the capacitance x frequency relation for the 

parallel assembling of the PZT´s

In Figs. 7, 8 and 9, one can verify the be-
havior of the capacitance as a function of the fre-
quency value. The capacitance remains almost 
constant for the pair of spherical resonators 100ml 
(PIC140 and PIC155) and 250ml (PIC 141). In 
Fig. 7 a) we perform a measure of capacitance for 
each - right and left - PZT independently. As de-
picted, their behavior is pretty the same inside the 
error bar, meaning that both are working properly. 
To verify if these values are in agreement, we can 
calculate the equivalent circuit for parallel capaci-
tors C

1
 and C

2
 and we will obtain almost the same 

value as in b). In b), we measure two opposite side 
PZT´s together in parallel, and the resulting val-
ue, (1.70 ± 0.10) µF, is in good agreement with 
the theoretical prediction, as shown in table2. 

For the plots presented in Fig. 8 a) and b) 
and Fig. 9 a) and b) we meet the same agreement 
with the corresponding theoretical values, as in 
Fig. 7 a) and b) respectively. The experimental 
data are also shown in table 2. 
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Figure 8 - The experimental measurements 
for the PIC 141 PZT attached to the 250ml 

spherical resonator
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Figure 9 - The experimental measurements 
for the PIC 155 PZT attached to the 100ml 

spherical resonator. In a), the capacitance value 
for the right and left PZT varying with the 

frequency and in b) the measurement of both 
PZT´s together in parallel

In Fig. 10, the PZT´s of the cylindrical 
resonator show an unexpected behavior at lower 
frequencies, from (23.0 to 28.5) kHz, so in this 
region we won’t be able to capture the bubble. 

As the frequency increases we re-obtain the 
ordinary behavior as observed for the spherical 
resonators. 

By means of these results we are able to 
identify the proper frequency range wherein our 
apparatus may allow for sonoluminescence.

To understand the variation of the imped-
ance of the PZT attached to the resonators, we have 
to take into account that at very low frequencies, a 

circuit having a relatively low input capacitance and 
resistance has a input impedance almost equal to the 
input resistance: Z ≈ R. Relatively low, here, means 
that the reactive part of the Z = R/ (1+ iω RC) be-
comes small; that is, it holds that RC << 1 / ω.

Whenever an input impedance of a circuit 
is considered, the output impedance of PZT must 
be taken into account [12]. For example, in this 
case, we know the PZT is of a capacitive nature, 
therefore, to define a frequency response of the 
input stage, sensor’s capacitance must be connect-
ed in parallel with the circuit’s input capacitance. 
Being the impedance a function of the signal fre-
quency, the increase in the signal rate makes the 
input impedance decrease, as can be read from 
our experimental data displayed in the graphics of 
Figs. 11, 12 and 13. In a) we measured each PZT 
separately and in b), in parallel.

Through the analysis of these graphics at 
these frequencies range we verified that the pre-
dominant effect in those PZT’s is capacitive. 
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Figure 10 - The experimental measurements 
for the PIC 151 PZT attached to the 100ml 
cylindrical resonator. Again, a) presents the 
capacitance value for the right and left PZT 
varying with the frequency and b) shows the 

measurement for both PZT´s together in 
parallel. In a), the small frequencies effect is not 

as clearly stated as in b)

As for the cylindrical resonator impedance 
curve, Fig. 14, the predominant peak that appear 
in the graph is the point where it enters into the 
resonance mode (between 21 – 22 kHz), and then 
starts to decrease with the frequency as expected.
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Table 2 - Experimental data for the impedance and capacitance measurements

Types of
Resonators Volume (ml) Types of

PZT

Theoretical 
Capacitance

(nF)b

Experimental
Capacitance 

(µF)e

Theoretical 
Inductance 

(µH)c

Experimental 
Inductance 

(µH)

Spherical 100 PIC140  1668.0 (1.73 ± 0.08)  0.23 (0.23± 0.05)

Spherical 250 PIC141  1355.2 (1.34 ± 0.08)  0.28 (0.28± 0.03)

Spherical 100 PIC155  1688.8 (1.71 ± 0.05)  0.23 (0.22± 0.10)

Cylindrical 100 PIC 151  1167.6  (1.19 ± 0.03)  0.33 (0.31± 0.10)
Values obtain using a linear fitting curve on the experimental data.

6. SUMMARY AND REMARKS

All these studies were made to improve our 
SBSL apparatus performance at our Laboratory of 
Experimental Physics (LaFEA) and to analyze the 
behavior of the PZT´s according to the frequency 
to demonstrate the linearity of the components. 
Therefore, we could minimize our experimen-
tal errors in calculating the resonance frequency, 
eliminating losses in the circuit thereby; enabling 
a better fit of experimental setup, and improving 
the observation of the phenomenon of SL.

Future analyses are being performed to 
measure the quality factor, Q, of the resonators 
flasks. Q is a measure of tightness of the resonance 
and is given by the ratio of the frequency (f ) at his 
maximum amplitude and ∆ f that is the frequency 
spread at half power. 

These measurements will give a good indi-
cation in what is missing in maintaining the emit-
ting bubble light in the middle of the resonator, 
if the problem lies with the resonant chamber or 
with the electronics.
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Figure 13 - The experimental measurements 
for the PIC 155 PZT attached to the 100ml 

spherical resonator. In a), the absolute 
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Figure 11 - The experimental measurements 
for the PIC 140 PZT attached to the 100ml 

spherical resonator. In a), one reads the absolute 
impedance value for the right and left PZT 

varying as a function of the frequency and in b) 
the corresponding measurement for the PZT´s in 

parallel is presented
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Figure 12 - The experimental measurements 
for the PIC 141 PZT attached to the 250ml 

spherical resonator. In a), the absolute 
impedance value for the right and left PZT 

varying with the frequency and in b) the 
corresponding measurement for PZT´s in 

parallel
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impedance value for the right and left PZT 
varying with the frequency and in b) the 
measurement for both PZT´s in parallel
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Figure 14 - The experimental measurements for 
the PIC 151 PZT attached at100ml cylindrical 
resonator. In a), the absolute impedance value 

for the right and left PZT varying with the 
frequency and in b) the measurement for both 

PZT´s in parallel
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