## KINETOSTATIC OF THE 3R DYAD (OR 2R MODULE)

Florian Ion Petrescu
Relly Victoria Petrescu


#### Abstract

This paper presents a method to determine the kinetostatic parameters at the $3 R$ dyad. One proposes to determine the forces from joints: $R_{B}, R_{D}, R_{23}$. To generalize the method and to the $2 R$ robots, are introduced and the two moments $M_{1}, M_{2}$. This ( $2 R$ module) is the principal from the anthropomorphous rotation robotic structures and mechatronic structures. Figure 1 shows a schematic diagram of the 3 R dyad minimum kinetostatic (determination of static forces); (loaded with the inertia forces, considered external forces). For if there are additional external forces, such as technological resistances will be added as well.


Keywords: 3R dyad, kinetostatic parameters, external forces, internal forces


Fig. 1. The kinetostatic parameters to a $3 R$ dyad

## 1. INTRODUCTION

In this paper it presents a method able to determine the kinetostatic parameters to a 3R dyad (see the Figure 1) [1-4].

To generalize the method and to the 2 R robots, are introduced and the two moments $\mathrm{M}_{1}, \mathrm{M}_{2}$. This 2 R module, is the principal from the android rotation robotic structures and mechatronic structures [1], [3].

The 3R dyad has two elements, noted with 2 and 3 . Their lengths are $l_{2}$ and $l_{3}$.

If the 3 R dyad is coupling to a 4 R mechanism, we note the forces which give the entry into dyad, with $\mathrm{R}_{12}$ and $\mathrm{R}_{03}$. In case the structure 2-3 is using to a robot or to another mechanism, we note the entrance forces, with $R_{B}$ and $R_{D}$.

One proposes to determine the forces from joints: $\mathrm{R}_{\mathrm{B}}, \mathrm{R}_{\mathrm{D}}, \mathrm{R}_{23}$.

Figure 1 shows a schematic diagram of the 3R dyad minimum kinetostatic (loaded with the inertia forces, considered external forces).

For if there are additional external forces, such as technological resistances will be added as well.

One can consider and the forces of gravity, if mechanism operates strictly vertically and working speeds are low [14].

## 2. DETERMINING THE FORCES FROM JOINTS

The joints forces represent the interior loads (internal forces).

One proposes to determine these (internal) forces.

We start with the internal force $\mathrm{R}_{\mathrm{B}}$, which is divided in two components in a cartesian planar system: $R_{B}^{x}, R_{B}^{y}$.

If external forces are known in general (are given, determined, calculated), internal forces (reactions of kinematic couplings) results from the balance of forces and moments of the dyad [2], [3], [4].

To start [3] we are writing an equation representing the sum of the moments from element 2 in relation to the point C , and another relationship which represent the sum of all moments from entire dyad, in relation to the point D (system 1).

$$
\left\{\begin{array}{l}
\sum M_{C}^{(2)}=0 \Rightarrow R_{B}^{x} \cdot\left(y_{C}-y_{B}\right)- \\
R_{B}^{y} \cdot\left(x_{C}-x_{B}\right)+M_{1}+ \\
+F_{G_{2}}^{i x} \cdot\left(y_{C}-y_{G_{2}}\right)- \\
-F_{G_{2}}^{i y} \cdot\left(x_{C}-x_{G_{2}}\right)+M_{2}^{i}=0 \\
\sum M_{D}^{(2,3)}=0 \Rightarrow R_{B}^{x} \cdot\left(y_{D}-y_{B}\right)-  \tag{1}\\
-R_{B}^{y} \cdot\left(x_{D}-x_{B}\right)+M_{1}+ \\
+F_{G_{2}}^{i x} \cdot\left(y_{D}-y_{G_{2}}\right)-M_{2}^{i}+M_{2}+ \\
-F_{G_{2}}^{i y} \cdot\left(x_{D}-x_{G_{2}}\right)+M_{3}^{i}+ \\
+F_{G_{3}}^{i x} \cdot\left(y_{D}-y_{G_{3}}\right)- \\
-F_{G_{3}}^{i y} \cdot\left(x_{D}-x_{G_{3}}\right)=0
\end{array}\right.
$$

The two equations are rewritten in the form of the system (2).

$$
\left\{\begin{array}{l}
\left(y_{C}-y_{B}\right) \cdot R_{B}^{x}-\left(x_{C}-x_{B}\right) \cdot R_{B}^{y}=-M_{1}- \\
-F_{G_{2}}^{i x} \cdot\left(y_{C}-y_{G_{2}}\right)+F_{G_{2}}^{i j i} \cdot\left(x_{C}-x_{G_{2}}\right)-M_{2}^{i} \\
\left(y_{D}-y_{B}\right) \cdot R_{B}^{x}-\left(x_{D}-x_{B}\right) \cdot R_{B}^{b}=  \tag{2}\\
=-M_{1}-F_{G_{2}}^{i x} \cdot\left(y_{D}-y_{G_{2}}\right)+ \\
+F_{G_{2}}^{i j} \cdot\left(x_{D}-x_{G_{2}}\right)-M_{2}^{i}-M_{2}- \\
-F_{G_{3}}^{i x} \cdot\left(y_{D}-y_{G_{3}}\right)+F_{G_{3}}^{i j} \cdot\left(x_{D}-x_{G_{3}}\right)-M_{3}^{i}
\end{array}\right.
$$

System (2) can be arranged as a linear system (3) by two equations with two unknowns $R_{12}^{x} \equiv R_{B}^{x} ; \quad R_{12}^{y} \equiv R_{B}^{y}$, with the coefficients, given from system (4).
$\left\{\begin{array}{l}\left\{\begin{array}{l}a_{11} \cdot R_{12}^{x}+a_{12} \cdot R_{12}^{y}=a_{1} \\ a_{21} \cdot R_{12}^{x}+a_{22} \cdot R_{12}^{y}=a_{2}\end{array}\right. \\ \text { or } \\ \left\{\begin{array}{l}a_{11} \cdot R_{B}^{x}+a_{12} \cdot R_{B}^{y}=a_{1} \\ a_{21} \cdot R_{B}^{x}+a_{22} \cdot R_{B}^{y}=a_{2}\end{array}\right.\end{array}\right.$

Solutions of the system (3) will be given by system (5).

$$
\left\{\begin{array}{l}
\Delta=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} \cdot a_{22}-a_{12} \cdot a_{21}  \tag{5}\\
\Delta_{x}=\left|\begin{array}{ll}
a_{1} & a_{12} \\
a_{2} & a_{22}
\end{array}\right|=a_{22} \cdot a_{1}-a_{12} \cdot a_{2} \\
\Delta_{y}=\left|\begin{array}{ll}
a_{11} & a_{1} \\
a_{21} & a_{2}
\end{array}\right|=a_{11} \cdot a_{2}-a_{21} \cdot a_{1} \\
R_{B}^{x}=R_{12}^{x}=\frac{\Delta_{x}}{\Delta}=\frac{a_{22} \cdot a_{1}-a_{12} \cdot a_{2}}{a_{11} \cdot a_{22}-a_{12} \cdot a_{21}} ; \\
R_{B}^{y}=R_{12}^{y}=\frac{\Delta_{y}}{\Delta}=\frac{a_{11} \cdot a_{2}-a_{21} \cdot a_{1}}{a_{11} \cdot a_{22}-a_{12} \cdot a_{21}}
\end{array}\right.
$$

Further determine other two internal forces, $R_{03}^{x}$ şi $R_{03}^{y}$, or ( $R_{D}^{x}$ şi $R_{D}^{y}$ ).

Next we write the sum of all forces on the dyad $(2,3)$ designed separately, first on the x axis and then on the y axis, (see the system 6).

$$
\begin{align*}
& \left\{\begin{array}{l}
\sum F_{x}^{(2,3)}=0 \Rightarrow \\
\Rightarrow R_{12}^{x}+F_{G_{2}}^{i x}+F_{G_{3}}^{i x}+R_{03}^{x}=0 \Rightarrow \\
\Rightarrow R_{D}^{x} \equiv R_{03}^{x}=-R_{12}^{x}-F_{G_{2}}^{i x}-F_{G_{3}}^{i x} \\
\sum F_{y}^{(2,3)}=0 \Rightarrow \\
\Rightarrow R_{12}^{y}+F_{G_{2}}^{i y}+F_{G_{3}}^{i y}+R_{03}^{y}=0 \Rightarrow \\
\Rightarrow R_{D}^{y} \equiv R_{03}^{y}=-R_{12}^{y}-F_{G_{2}}^{i y}-F_{G_{3}}^{i y}
\end{array}\right. \\
& \left\{\begin{array}{l}
\left(\begin{array}{l}
\sum F_{x}^{(2)}=0 \Rightarrow R_{12}^{x}+F_{G_{2}}^{i x}- \\
-R_{23}^{x}=0 \Rightarrow R_{23}^{x}=R_{12}^{x}+F_{G_{2}}^{i x} \\
\sum F_{y}^{(2)}=0 \Rightarrow R_{12}^{y}+F_{G_{2}}^{i y}- \\
-R_{23}^{y}=0 \Rightarrow R_{23}^{y}=R_{12}^{y}+F_{G_{2}}^{i y}
\end{array}\right. \\
\text { or } \begin{array}{l}
\sum_{x} F_{x}^{(3)}=0 \Rightarrow R_{23}^{x}+F_{G_{3}}^{i x}+ \\
+R_{D}^{x}=0 \Rightarrow R_{23}^{x}=-F_{G_{3}}^{i x}-R_{D}^{x} \\
\sum F_{y}^{(3)}=0 \Rightarrow R_{23}^{y}+F_{G_{3}}^{i y}+
\end{array} \\
+R_{D}^{y}=0 \Rightarrow R_{23}^{y}=-F_{G_{3}}^{i y}-R_{D}^{y}
\end{array}\right.
\end{align*}
$$

For the last two scalar components of the internal force from the joint C , one writes a new balance of forces on element 2 (for example), designed separately on axes x and y (system 7).

We obtained directly the internal forces $R_{23}^{x}$ and $R_{23}^{y}$. Their opposites, $R_{32}^{x}$ and $R_{32}^{y}$, they will be equal but opposite
directed their, or in other words will have the same value but opposite sign [3].

For that all kinetostatic calculations of the 3 R dyad to be possible, must be determined in advance, the forces and moments of inertia, separately for each element of the dyad. These are called „the group of the inertial forces", and are expressed with the relations system (8).

$$
\begin{align*}
& \left\{\begin{array} { l } 
{ F _ { G _ { 2 } } ^ { i x } = - m _ { 2 } \cdot \ddot { x } _ { G _ { 2 } } } \\
{ F _ { G _ { G _ { 2 } } } ^ { i v } = - m _ { 2 } \cdot \ddot { y } _ { G _ { 2 } } } \\
{ M _ { 2 } ^ { i } = - J _ { G _ { 2 } } \cdot \varepsilon _ { 2 } }
\end{array} \left\{\begin{array}{l}
F_{C_{3}}^{i x}=-m_{3} \cdot \ddot{x}_{G_{3}} \\
F_{G_{3}}^{i v}=-m_{3} \cdot \ddot{y}_{G_{3}} \\
M_{3}^{i}=-J_{G_{3}} \cdot \varepsilon_{3}
\end{array}\right.\right. \\
& \left\{\begin{array}{l}
x_{G_{2}}=x_{B}+s_{2} \cdot \cos \varphi_{2} \\
y_{G_{2}}=y_{B}+s_{2} \cdot \sin \varphi_{2}
\end{array} \Rightarrow\right. \\
& \Rightarrow\left\{\begin{array}{l}
\dot{x}_{G_{2}}=\dot{x}_{B}-s_{2} \cdot \sin \varphi_{2} \cdot \dot{\varphi}_{2} \\
\dot{y}_{G_{2}}=\dot{y}_{B}+s_{2} \cdot \cos \varphi_{2} \cdot \dot{\varphi}_{2}
\end{array} \Rightarrow\right. \\
& \Rightarrow\left\{\begin{array}{l}
\ddot{x}_{G_{2}}=\ddot{x}_{B}-s_{2} \cdot \cos \varphi_{2} \cdot \omega_{2}^{2}-s_{2} \cdot \sin \varphi_{2} \cdot \varepsilon_{2} \\
\ddot{y}_{G_{2}}=\ddot{y}_{B}-s_{2} \cdot \sin \varphi_{2} \cdot \omega_{2}^{2}+s_{2} \cdot \cos \varphi_{2} \cdot \varepsilon_{2}
\end{array}\right. \\
& \left\{\begin{array}{l}
x_{G_{3}}=x_{D}+s_{3^{3}} \cdot \cos \varphi_{3^{3}} \\
y_{G_{3}}=y_{D}+s_{3^{3}} \cdot \sin \varphi_{3^{\prime}}
\end{array} \Rightarrow\right. \\
& \Rightarrow\left\{\begin{array}{l}
\dot{x}_{G_{3}}=\dot{x}_{D}-s_{3} \cdot \sin \varphi_{3_{3}} \cdot \dot{\varphi}_{3} \\
\dot{y}_{G_{3}}=\dot{y}_{D}+s_{3} \cdot \cos \varphi_{3_{3}} \cdot \dot{\varphi}_{3}
\end{array} \Rightarrow\right.  \tag{8}\\
& \Rightarrow\left\{\begin{array}{l}
\ddot{x}_{G_{3}}=\ddot{x}_{D}-s_{3^{3}} \cdot \cos \varphi_{3^{3}} \cdot \omega_{3}^{2}-s_{3^{3}} \cdot \sin \varphi_{3^{\prime}} \cdot \varepsilon_{3} \\
\ddot{y}_{G_{3}}=\ddot{y}_{D}-s_{3^{2}} \cdot \sin \varphi_{3^{\prime}} \cdot \omega_{3}^{2}+s_{3^{3}} \cdot \cos \varphi_{3^{\prime}} \cdot \varepsilon_{3}
\end{array}\right.
\end{align*}
$$

## 3. DIAGRAMS OF THE FORCES FROM JOINTS

The joints forces can be determined and represented by the two diagrams below (Figure 2, and 3).

Below you can see the six forces (internal forces) of joints from dyad 3R, depending on the angle of the crank FI, when the dyad is linked together with a crank, forming a mechanism 4 R [1-4].

Variation is represented on an entire cycle kinematic, for an angular velocity of crank, 200 or $300\left[\mathrm{~s}^{-1}\right]$.


Fig. 2. The six internal forces of joints; $\omega=200\left[s^{-1}\right]$


Fig. 3. The six internal forces of joints; $\omega=300\left[\mathrm{~s}^{-1}\right]$

## 4. CONCLUSIONS

This method presented in the article, is the most elegant and direct method to determine the internal forces at a 3R dyad [3] [1-11].

The method has a strong teaching character.

The relationships presented in this paper allow and the synthesis of robots (the mechanical systems, serial, in movement) [3].

## 5. IMPORTANCE AND USES

I-The first use of the reaction forces from couplings, is sizing of the kinematic couplings.

II-At the mechanisms with a degree of mobility, with the forces from driving coupling $\left(R_{B}^{x}, R_{B}^{y}\right)$, it determines the required motor torque $\left(M_{m}\right)$. We illustrate by the mechanism articulated quadrilateral (Fig. 4 and relationships 9).


Fig. 4. The forces at a mechanism articulated quadrilateral

$$
\left\{\begin{array}{l}
M_{m}-R_{21}^{x} \cdot\left(y_{B}-y_{A}\right)+R_{21}^{v} \cdot\left(x_{B}-x_{A}\right)=0 \Rightarrow \\
\Rightarrow M_{m}=R_{21}^{x} \cdot\left(y_{B}-y_{A}\right)-R_{21}^{y} \cdot\left(x_{B}-x_{A}\right) \Rightarrow  \tag{9}\\
\Rightarrow M_{m}=-R_{12}^{x} \cdot\left(y_{B}-y_{A}\right)+R_{12}^{v} \cdot\left(x_{B}-x_{A}\right) \Rightarrow \\
\Rightarrow M_{m}=-R_{B}^{x} \cdot\left(y_{B}-y_{A}\right)+R_{B}^{v} \cdot\left(x_{B}-x_{A}\right)
\end{array}\right.
$$

Usually the torques $\mathrm{M}_{1}$ and $\mathrm{M}_{2}$ are null. But they can be and an external torque.

III-At the mechanisms with two degree of mobility, with the forces from driving coupling (see the Fig. 5), it determines the required motor torques: $M_{1} \equiv M_{m 2}, M_{2} \equiv M_{m 3}$.


Fig. 5. The forces at a mechanism with two degree of mobility
This scheme is used in anthropomorphic robots. Coupling B is denoted by $\mathrm{O}_{2}$. Coupling C is denoted by $\mathrm{O}_{3}$. Coupling D become an end effector point M. Basic structure 3R of anthropomorphic robot (Fig. 6) can be decomposed into 2R planar structure (Fig. 5) which also possesses an additional rotating around a vertical axis $\left(\mathrm{O}_{0} \mathrm{O}_{1}\right)$.


Fig. 6. The basic structure $3 R$
It is more convenient to study the structure plan $\mathrm{O}_{2} \mathrm{O}_{3} \mathrm{M}$ system (elements 2 and 3 ). But since this system (plan, 2R) using balanced, it's good to study in its balanced form (Fig. 7).


Fig. 7. The basic, balanced, structure $2 R$
Masses and lengths of the system are calculated using the equation 10 .

$$
\left\{\left\{\begin{array}{l}
\left\{\begin{array}{l}
\sum M_{O_{3}}^{(3)}=0 \Rightarrow \\
\Rightarrow m_{s} \cdot d_{3}+m_{3} \cdot s_{3}=m_{I I} \cdot \rho_{3} \\
\Rightarrow \rho_{3}=\frac{m_{s} \cdot d_{3}+m_{3} \cdot s_{3}}{m_{I I I}} \\
m_{3^{\prime}}=m_{3}+m_{s}+m_{I I I}
\end{array}\right.  \tag{10}\\
\left\{\begin{array}{l}
\sum M_{O_{2}}^{(2+3)}=0 \Rightarrow \\
\Rightarrow m_{3^{\prime}} \cdot d_{2}+m_{2} \cdot s_{2}=m_{I I} \cdot \rho_{2} \\
\Rightarrow \rho_{2}=\frac{m_{3^{\prime}} \cdot d_{2}+m_{2} \cdot s_{2}}{m_{I I}} \\
m_{2^{\prime}}=m_{3^{\prime}}+m_{2}+m_{I I}
\end{array}\right.
\end{array}\right.\right.
$$

Forces from the driveline balanced plan can be seen in the Fig. 8.


Fig. 8. The forces of the basic (balanced) structure $2 R$
Now, it still writing inertial forces (relations system 11) of the point $\mathrm{O}_{3}$.
$\left\{\begin{array}{l}F_{i O_{3}}^{x}=-m_{3^{\prime}} \cdot \ddot{x}_{O_{3}}= \\ =-m_{3^{\prime}} \cdot(-) d_{2} \cdot \cos \varphi_{20} \cdot \omega_{20}^{2}= \\ =m_{3^{\prime}} \cdot d_{2} \cdot \cos \varphi_{20} \cdot \omega_{20}^{2} \\ F_{i 0_{3}}^{y}=-m_{3^{\prime}} \cdot \ddot{y}_{O_{3}}= \\ =-m_{3^{\prime}} \cdot(-) d_{2} \cdot \sin \varphi_{20} \cdot \omega_{20}^{2}= \\ =m_{3^{\prime}} \cdot d_{2} \cdot \sin \varphi_{20} \cdot \omega_{20}^{2} \\ M_{i O_{3}}=-J_{O_{3}} \cdot \varepsilon_{3}\end{array}\right.$

Now we are writing and the inertial forces of the points $\mathrm{S}_{2}$ (12) and $\mathrm{I}_{2}$ (13).

$$
\begin{align*}
& \left\{\begin{array}{l}
F_{i S_{2}}^{x}=-m_{2} \cdot \ddot{x}_{S_{2}}=m_{2} \cdot s_{2} \cdot \cos \varphi_{20} \cdot \omega_{20}^{2} \\
F_{i S_{2}}^{y}=-m_{2} \cdot \ddot{y}_{S_{2}}=m_{2} \cdot s_{2} \cdot \sin \varphi_{20} \cdot \omega_{20}^{2}
\end{array}\right.  \tag{12}\\
& \left\{\begin{array}{l}
F_{i I_{2}}^{x}=-m_{I I} \cdot \ddot{x}_{I_{2}}=-m_{I I} \cdot \rho_{2} \cdot \cos \varphi_{20} \cdot \omega_{20}^{2} \\
F_{i I_{2}}=-m_{I I} \cdot \ddot{y}_{I_{2}}=-m_{I I} \cdot \rho_{2} \cdot \sin \varphi_{20} \cdot \omega_{20}^{2}
\end{array}\right. \tag{13}
\end{align*}
$$

Now we can write the equilibrium equations on the element 2 projected on the x (system 14) and y (system 15).

$$
\begin{align*}
& \sum F_{(2)}^{x}=0 \Rightarrow m_{3} \cdot d_{2} \cdot \cos \varphi_{20} \cdot \omega_{20}^{2}+m_{2} \cdot s_{2} \cdot \cos \varphi_{20} \cdot \omega_{20}^{2}- \\
& -m_{I I} \cdot \rho_{2} \cdot \cos \varphi_{20} \cdot \omega_{20}^{2}+R_{o_{2}}^{x}=0 \Rightarrow \\
& \Rightarrow\left(m_{3} \cdot d_{2}+m_{2} \cdot s_{2}-m_{n} \cdot \rho_{11}\right) \cdot \cos \varphi_{20} \cdot \omega_{20}^{2}+R_{12}^{x}=0 \\
& \text { but } m_{3} \cdot d_{2}+m_{2} \cdot s_{2}-m_{u} \cdot \rho_{I I}=0 \text { because balanced } \Rightarrow \\
& \Rightarrow R_{O_{2}}^{x} \equiv R_{12}^{x}=0 \tag{14}
\end{align*}
$$

$\int \sum_{(2)}^{\prime \prime}=0 \Rightarrow m_{3} \cdot d_{2} \cdot \sin \varphi_{22} \cdot \omega_{20}^{2}+m_{2} \cdot s_{2} \cdot \sin \varphi_{20} \cdot \omega_{20}^{2}-$
$-m_{11} \cdot \rho_{2} \cdot \sin \varphi_{20} \cdot \omega_{20}^{2}-m_{2} \cdot g+R_{12}^{\prime}=0 \Rightarrow$
$\left\{\Rightarrow\left(m_{3} \cdot d_{2}+m_{2} \cdot s_{2}-m_{1} \cdot \rho_{4}\right) \cdot \sin \varphi_{20} \cdot \omega_{20}^{2}-m_{2} \cdot g+R_{12}^{\prime \prime}=0\right.$
but $\quad m_{3^{\prime}} \cdot d_{2}+m_{2} \cdot s_{2}-m_{I I} \cdot \rho_{I I}=0$ because balanced $\Rightarrow$
$\Rightarrow R_{o_{2}}^{v} \equiv R_{12}^{v}=m_{2} \cdot g=G_{o_{2}}$

It can be seen that the torque loads are minimal precisely because balancing. Effect given inertial forces (torques produced by these forces) cancel (balance due).

Torques produced by the forces of gravity is canceled and they all balance due.

Balanced final weight also makes the powertrain only one effect, a vertical load (causes a vertical reactor) in fixed coupling.

At a total balanced, even the horizontal load disappears.

It will still write an amount of moments to the fixed point $\mathrm{O}_{2}$, on the element 2 (system 16).

Mass moment of inertia (or mechanical) of the element 2 , is calculated with relation 17.
$J_{O_{2}}^{*}=J_{O_{2}}+m_{3} \cdot d_{2}^{2}=m_{2} \cdot s_{2}^{2}+m_{I I} \cdot \rho_{2}^{2}+m_{3} \cdot d_{2}^{2}$

One can determine now the torque required ( $\mathrm{M}_{\mathrm{m} 2}$ ), which must be generated by the actuator 2 (mounted in coupling $\mathrm{O}_{2}$ ); see the relation (18).
$M_{m_{2}}=J_{O_{2}}^{*} \cdot \varepsilon_{2}=\left(m_{2} \cdot s_{2}^{2}+m_{I I} \cdot \rho_{2}^{2}+m_{3^{\prime}} \cdot d_{2}^{2}\right) \cdot \ddot{\varphi}_{20}$
We now sum of the moments of all forces on item 3 in relation to swivel $\mathrm{O}_{3}$ (relationship 19).
$\sum M_{O_{3}}^{(3)}=0 \Rightarrow$
$M_{m_{3}}+M_{i 0_{3}}=0 \Rightarrow M_{m_{3}}-J_{O_{3}} \cdot \varepsilon_{3}=0 \Rightarrow$
$\Rightarrow M_{m_{3}}=J_{0_{3}} \cdot \varepsilon_{3} \Rightarrow$
$\Rightarrow M_{m_{3}}=\left(m_{s} \cdot d_{3}^{2}+m_{3} \cdot s_{3}^{2}+m_{I I} \cdot \rho_{3}^{2}\right) \cdot \ddot{\varphi}_{30}$
One determines now and the vertical component, of the reaction, from the mobile (internal) coupling $\mathrm{O}_{3}$; (see the relations of the system 20 ).

$$
\left\{\begin{array}{l}
\sum F_{(3)}^{y}=0 \Rightarrow-m_{3^{\prime}} \cdot g+R_{23}^{y}=0 \Rightarrow  \tag{20}\\
\Rightarrow R_{23}^{y}=m_{3^{\prime}} \cdot g \Rightarrow \\
\Rightarrow R_{32}^{y}=-R_{23}^{y}=-m_{3^{\prime}} \cdot g
\end{array}\right.
$$

Horizontal component (of the reaction from the kinematic coupling $\mathrm{O}_{3}$ ) is zero (21).
$R_{23}^{x}=-R_{32}^{y}=0$
6. DYNAMICS OF SYSTEM 2R (LAGRANGE DIFFERENTIAL EQUATION OF THE SECOND KIND)
It writes now, just the most important relations of the system $2 R$, in the form 22.

$$
\left\{\begin{array}{l}
M_{m_{2}}=J_{O_{2}}^{*} \cdot \varepsilon_{2}  \tag{22}\\
M_{m_{3}}=J_{O_{3}} \cdot \varepsilon_{3} \\
M_{m_{2}}=\left(m_{2} \cdot s_{2}^{2}+m_{I I} \cdot \rho_{2}^{2}+m_{3^{\prime}} \cdot d_{2}^{2}\right) \cdot \ddot{\varphi}_{20} \\
M_{m_{3}}=\left(m_{s} \cdot d_{3}^{2}+m_{3} \cdot s_{3}^{2}+m_{I I I} \cdot \rho_{3}^{2}\right) \cdot \ddot{\varphi}_{30}
\end{array}\right.
$$

These relationships necessary to study the dynamics of the kinematic chain level (22), can be obtained directly by another method, which uses Lagrange differential equation of the second kind, and the kinetic energy saving mechanism.

This method is more direct than cinetostatic study, but has the disadvantage of not determining the loadings (reactions, internal forces) from kinematics chain, necessary to calculate the strength of the material in applications in which certain dimensions are selected (thickness or diameter) of the kinematic elements 2 and 3, and connecting joints.

One first determines the speeds, in the gravity centers (relations from system 23, and Fig. 9).
$\left\{\begin{array}{l}\dot{x}_{O_{2}}=0 ; \\ \dot{y}_{O_{2}}=0 ; \quad \dot{\varphi}_{20} \equiv \omega_{20} \equiv \omega_{2} \\ \dot{x}_{O_{3}}=-d_{2} \cdot \sin \varphi_{20} \cdot \omega_{2} ; \\ \dot{y}_{O_{3}}=d_{2} \cdot \cos \varphi_{20} \cdot \omega_{2} ; \\ \dot{\varphi}_{30} \equiv \omega_{30} \equiv \omega_{3}\end{array}\right.$


Fig. 9. Dynamics of the driveline balanced plan
For item 3, mass moment of inertia or mechanical (inertial mass) is determined by the relationship 24 .

$$
\begin{equation*}
J_{O_{3}}=m_{s} \cdot d_{3}^{2}+m_{3} \cdot s_{3}^{2}+m_{\text {III }} \cdot \rho_{3}^{2} \tag{24}
\end{equation*}
$$

For item 2, will cause mass moment of inertia (mechanical) in fixed joint $\mathrm{O}_{2}$ (25).

$$
\begin{equation*}
J_{O_{2}}=m_{2} \cdot s_{2}^{2}+m_{I I} \cdot \rho_{2}^{2} \tag{25}
\end{equation*}
$$

The kinetic energy of mechanism is determined with the relations of the system (26).

$$
\left\{\begin{array}{l}
E=\frac{1}{2} \cdot J_{O_{2}} \cdot \omega_{2}^{2}+\frac{1}{2} \cdot J_{O_{3}} \cdot \omega_{3}^{2}+  \tag{26}\\
+\frac{1}{2} \cdot m_{3^{\prime}} \cdot \dot{x}_{O_{3}}^{2}+\frac{1}{2} \cdot m_{3^{\prime}} \cdot \dot{y}_{O_{3}}^{2}= \\
=\frac{1}{2} \cdot J_{O_{2}} \cdot \omega_{2}^{2}+\frac{1}{2} \cdot J_{O_{3}} \cdot \omega_{3}^{2}+ \\
+\frac{1}{2} \cdot m_{3^{\prime}} \cdot d_{2}^{2} \cdot \omega_{2}^{2}=\frac{1}{2} \cdot J_{O_{3}} \cdot \omega_{3}^{2}+ \\
+\frac{1}{2} \cdot \omega_{2}^{2} \cdot\left(J_{O_{2}}+m_{3^{\prime}} \cdot d_{2}^{2}\right)= \\
=\frac{1}{2} \cdot J_{O_{3}} \cdot \omega_{3}^{2}+\frac{1}{2} \cdot J_{O_{2}}^{*} \cdot \omega_{2}^{2} \\
J_{O_{2}}^{*}=J_{O_{2}}+m_{3^{\prime}} \cdot d_{2}^{2}
\end{array}\right.
$$

## REFERENCES

[1] COMANESCU, A., Bazele modelarii mecanismelor. E.Politeh. Press, Bucureşti, 2010, ISBN 13: 978-606-515-114-7, page count 274.
[2] FRANKLIN, D.J., Ingenious Mechanisms for Designers and Inventors, Industrial Press publisher, 1930.
[3] PETRESCU, F.I., Teoria Mecanismelor si a Masinilor, Create Space Publisher, USA, 2011,.
[4] WALDRON, K.J., KINZEL, G.L., Kinematics, Dynamics, and Design of Machinery, Department of Mechanical Engineeering, Ohio State University, USA, Available in:
http://www.me.mtu.edu/~nels/3501SUM MER07/kinematic_matlab_help.pdf
[5] PETRESCU F.I., PETRESCU R.V., Kinematics of the Planar Quadrilateral Mechanism, Engevista, Vol. 14, N. 3, December 2012, p. 345-348.
[6] POWELL I.L., B.A.MIERE, The kinematic analysis and simulation of the parallel topology manipulator, The Marconi Review, 1982.
[7] REDDY M., Precise Non Linear Modeling of Flexible Link Flexible Joint Manipulator, IREMOS, Vol. 5, N. 3, June (Part B) 2012, p. 1368-1374.
[8] SHANMUGA G., a.o., A Survey on Development of Inspection Robots: Kinematic Analysis, Workspace Simulation and Software Development, IREME, Vol. 6, N. 7, November 2012, p.1493-1507.
[9] PETRESCU, F.I., PETRESCU, R.V., Forces and Efficiency of Cams, International Review of Mechanical Engineering (IREME Journal), March 2013, Vol. 7, N. 3, p., 2013.
[10] PRAZERES U.R., SANTOS W.L.R., Caracterização mecânica e elétrica da liga 6101 modificada com
diferentes teores de MG, Engevista, Vol. 13, N. 2, 2011, p. 122-128.
[11] NOGUEIRA O.C., REAL M.V., Estudo Comparativo de Motores Diesel Maritimos Atraves da Analise de Lubrificantes Usados e Engenharia de Confiabilidade, Engevista, Vol. 13, N. 3, December 2011, p. 244-254.

