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KINETOSTATIC OF THE 3R DYAD (OR 2R MODULE) 

                       Florian Ion Petrescu 

                   Relly Victoria Petrescu
 

 

Abstract: This paper presents a method to determine the kinetostatic parameters at the 

3R dyad. One proposes to determine the forces from joints: RB, RD, R23. To generalize the 

method and to the 2R robots, are introduced and the two moments M1, M2. This (2R 

module) is the principal from the anthropomorphous rotation robotic structures and 

mechatronic structures. Figure 1 shows a schematic diagram of the 3R dyad minimum 

kinetostatic (determination of static forces); (loaded with the inertia forces, considered 

external forces). For if there are additional external forces, such as technological 

resistances will be added as well. 
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Fig. 1. The kinetostatic parameters to a 3R dyad 
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1. INTRODUCTION 
In this paper it presents a method able 

to determine the kinetostatic parameters 

to a 3R dyad (see the Figure 1) [1-4].  

To generalize the method and to the 

2R robots, are introduced and the two 

moments M1, M2. This 2R module, is the 

principal from the android rotation 

robotic structures and mechatronic 

structures [1], [3]. 

The 3R dyad has two elements, noted 

with 2 and 3. Their lengths are l2 and l3. 

If the 3R dyad is coupling to a 4R 

mechanism, we note the forces which 

give the entry into dyad, with R12 and 

R03. In case the structure 2-3 is using to a 

robot or to another mechanism, we note 

the entrance forces, with RB and RD. 

One proposes to determine the forces 

from joints: RB, RD, R23. 

Figure 1 shows a schematic diagram 

of the 3R dyad minimum kinetostatic 

(loaded with the inertia forces, 

considered external forces). 

For if there are additional external 

forces, such as technological resistances 

will be added as well. 

One can consider and the forces of 

gravity, if mechanism operates strictly 

vertically and working speeds are low [1-

4]. 
 

2. DETERMINING THE FORCES 
FROM JOINTS 

The joints forces represent the interior 

loads (internal forces). 

One proposes to determine these 

(internal) forces. 

We start with the internal force RB, 

which is divided in two components in a 

cartesian planar system: x

BR , y

BR . 

If external forces are known in 

general (are given, determined, 

calculated), internal forces (reactions of 

kinematic couplings) results from the 

balance of forces and moments of the 

dyad [2], [3], [4]. 

To start [3] we are writing an 

equation representing the sum of the 

moments from element 2 in relation to 

the point C, and another relationship 

which represent the sum of all moments 

from entire dyad, in relation to the point 

D (system 1).  
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The two equations are rewritten in the 

form of the system (2). 
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System (2) can be arranged as a linear 

system (3) by two equations with two 

unknowns y

B

yx

B

x RRRR  1212 ; , with the 

coefficients, given from system (4).  
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Solutions of the system (3) will be 

given by system (5). 
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Further determine other two internal 

forces, xR03  şi yR03 , or ( x

DR  şi y

DR ). 

Next we write the sum of all forces 

on the dyad (2,3) designed separately, 

first on the x axis and then on the y axis, 

(see the system 6). 
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For the last two scalar components of 

the internal force from the joint C, one 

writes a new balance of forces on element 

2 (for example), designed separately on 

axes x and y (system 7). 

We obtained directly the internal 

forces xR23  and yR23 . Their opposites, xR32  

and yR32 , they will be equal but opposite 

directed their, or in other words will have 

the same value but opposite sign [3]. 

For that all kinetostatic calculations 

of the 3R dyad to be possible, must be 

determined in advance, the forces and 

moments of inertia, separately for each 

element of the dyad. These are called 

„the group of the inertial forces”, and are 

expressed with the relations system (8). 
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3. DIAGRAMS OF THE 

FORCES FROM JOINTS 
The joints forces can be determined 

and represented by the two diagrams 

below (Figure 2, and 3). 

Below you can see the six forces 

(internal forces) of joints from dyad 3R, 

depending on the angle of the crank FI, 

when the dyad is linked together with a 

crank, forming a mechanism 4R [1-4].  

Variation is represented on an entire 

cycle kinematic, for an angular velocity 

of crank, 200 or 300 [s
-1

]. 
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Fig. 2. The six internal forces of 

joints;=200 [s
-1

]  

 

 

Fig. 3. The six internal forces of 

joints;=300 [s
-1

]  

 
4. CONCLUSIONS 
This method presented in the article, 

is the most elegant and direct method to 

determine the internal forces at a 3R dyad 

[3] [1-11]. 

The method has a strong teaching 

character. 

The relationships presented in this 

paper allow and the synthesis of robots 

(the mechanical systems, serial, in 

movement) [3]. 

 

5. IMPORTANCE AND USES 
I-The first use of the reaction forces 

from couplings, is sizing of the kinematic 

couplings. 

II-At the mechanisms with a degree 

of mobility, with the forces from driving 

coupling ( y

B

x

B RR , ), it determines the 

required motor torque ( mM ). We 

illustrate by the mechanism articulated 

quadrilateral (Fig. 4 and relationships 9). 
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Fig. 4. The forces at a mechanism articulated 

quadrilateral  

   

   

   

   



















AB

y

BAB

x

Bm

AB

y

AB

x

m

AB

y

AB

x

m

AB

y

AB

x

m

xxRyyRM

xxRyyRM

xxRyyRM

xxRyyRM

1212

2121

2121 0

     (9) 

Usually the torques M1 and M2 are 

null. But they can be and an external 

torque. 

III-At the mechanisms with two 

degree of mobility, with the forces from 

driving coupling (see the Fig. 5), it 

determines the required motor torques: 

3221 , mm MMMM  .  
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Fig. 5. The forces at a mechanism with two 

degree of mobility  

This scheme is used in 

anthropomorphic robots. Coupling B is 

denoted by O2. Coupling C is denoted by 

O3. Coupling D become an end effector 

point M. Basic structure 3R of 

anthropomorphic robot (Fig. 6) can be 

decomposed into 2R planar structure 

(Fig. 5) which also possesses an 

additional rotating around a vertical axis 

(O0O1). 
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Fig. 6. The basic structure 3R 

 

It is more convenient to study the 

structure plan O2O3M system (elements 2 

and 3). But since this system (plan, 2R) 

using balanced, it's good to study in its 

balanced form (Fig. 7). 

 

 
Fig. 7. The basic, balanced, structure 2R 

 

Masses and lengths of the system are 

calculated using the equation 10. 
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Forces from the driveline balanced 

plan can be seen in the Fig. 8. 

 

Fig. 8. The forces of the basic (balanced) 
structure 2R 

Now, it still writing inertial forces 

(relations system 11) of the point O3. 
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Now we are writing and the inertial 

forces of the points S2 (12) and I2 (13). 
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Now we can write the equilibrium 

equations on the element 2 projected on 

the x (system 14) and y (system 15). 
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It can be seen that the torque loads 

are minimal precisely because balancing. 

Effect given inertial forces (torques 

produced by these forces) cancel (balance 

due).  

Torques produced by the forces of 

gravity is canceled and they all balance 

due.  

Balanced final weight also makes the 

powertrain only one effect, a vertical load 

(causes a vertical reactor) in fixed 

coupling. 

At a total balanced, even the 

horizontal load disappears. 

It will still write an amount of 

moments to the fixed point O2, on the 

element 2 (system 16). 
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Mass moment of inertia (or 

mechanical) of the element 2, is 

calculated with relation 17. 
2
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One can determine now the torque 

required (Mm2), which must be generated 

by the actuator 2 (mounted in coupling 

O2); see the relation (18). 
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We now sum of the moments of all 

forces on item 3 in relation to swivel O3 

(relationship 19). 
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One determines now and the vertical 

component, of the reaction, from the 

mobile (internal) coupling O3; (see the 

relations of the system 20). 
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Horizontal component (of the 

reaction from the kinematic coupling O3) 

is zero (21). 
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6. DYNAMICS OF SYSTEM 2R 
(LAGRANGE DIFFERENTIAL 
EQUATION OF THE SECOND 
KIND) 

It writes now, just the most important 

relations of the system 2R, in the form 

22. 

 
 






















30

2

3

2

33

2

3

20

2

2'3

2

2

2

22

3

2

*

3

2

33

22













IIIsm

IIm

Om

Om

msmdmM

dmmsmM

JM

JM

  

                                                           (22) 

These relationships necessary to 

study the dynamics of the kinematic 

chain level (22), can be obtained directly 

by another method, which uses Lagrange 

differential equation of the second kind, 

and the kinetic energy saving mechanism.  

This method is more direct than 

cinetostatic study, but has the 

disadvantage of not determining the 

loadings (reactions, internal forces) from 

kinematics chain, necessary to calculate 

the strength of the material in 

applications in which certain dimensions 

are selected (thickness or diameter) of the 

kinematic elements 2 and 3, and 

connecting joints. 

One first determines the speeds, in the 

gravity centers (relations from system 23, 

and Fig. 9). 
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Fig. 9. Dynamics of the driveline balanced 

plan 
For item 3, mass moment of inertia or 

mechanical (inertial mass) is determined 

by the relationship 24. 
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For item 2, will cause mass moment 

of inertia (mechanical) in fixed joint O2 

(25). 
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The kinetic energy of mechanism is 

determined with the relations of the 

system (26). 
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Kinetic energy equation for the 

balanced driveline is expressed with final 

relationship (27). 
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It uses the Lagrange differential 

equations of second kind (28). 

















































































3

33

2

22

3,2

Q
q

E

q

E

dt

d

Q
q

E

q

E

dt

d

kwith

Q
q

E

q

E

dt

d
k

kk







                    (28) 

How kinetic energy in this case does 

not depend directly from the kinematic 

parameters of positions q2 and q3, 

represented by the position angles 20 

and 30, it can be used the simplified 

form of the Lagrange equations (29). 
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By replacing the partial derivatives 

and making the derivatives in function of 

time, the system (29) takes the form (30). 
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