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Abstract: The paper presents an original geometrical and kinematic method for the study of geometry and 

determining positions of a MP-3R structure. It presents shortly the MP-3R direct and inverse kinematics, the 

inverse kinematics being solved by an original exactly method. One presents shortly an original method to 

solve the robot inverse kinematics exemplified at the 3R-Robots (MP-3R). The system which must be solved 

has three equations and three independent parameters to determine. Constructive basis is represented by a 

robot with three degrees of freedom (a robot with three axes of rotation).  If one study (analyzes) an 

anthropomorphic robot with three axes of rotation (which represents the main movements, absolutely 

necessary), it already has a base system, on which one can then add other movements (secondary, additional). 

Calculations were arranged and in the matrix form. 
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1. Introduction 

 

Although the anthropomorphic robots, have different structural forms, in recent years 

have been developed especially those with rotating movements, with three or more axis. 

Constructive basis is represented by a robot with three degrees of freedom (a robot with three 

axes of rotation) [1].  If we study (analyze) an anthropomorphic robot with three axes of rotation 

(which represents the main movements, absolutely necessary), we already have a base system, on 

which we can then add other movements (secondary, additional). The base system has three rotary 

axes: a vertical axis (by this axis all the system is rotated, for positioning), and two horizontal 

axes (each making possible a rotation of an arm). Calculations were arranged and in the matrix 

form. 

In direct kinematics, known kinematic parameters (input parameters) are absolute rotation 

angles of the three mobile elements: 10, 20, 30, the rotation angles of the three actuators (electric 

motors, mounted in the rotational kinematic couplings), and the determined parameters (output 

parameters) are the three absolute coordinates xM, yM, zM of the point M, ie kinematic parameters 

(coordinates) of the endeffector (which can be a hand, to grabbed, a soldering tip, painted, cut, 

etc). 

 

2. Geometry and Direct Kinematic, to the MP-3R 

 

Kinematics of serial manipulators and robots will be illustrated by a 3R kinematic model 

(see Fig. 01), a medium difficulty system, ideal for understanding the phenomenon, but also to 

specify the basic knowledge necessary for starting calculations for systems simpler and more 

complex. 

 

 
Fig. 1 Geometry and direct kinematics to a MP-3R 



ISSN: 1415-7314  
ISSN online: 2317-6717 

111 
ENGEVISTA, V. 18, n. 1, p. 109-124, Julho 2016. 

 

Fixed coordinate system was noted with x0O0y0z0. Mobile systems related to (reinforced 

by) the three mobile elements (1, 2, 3) have indices 1, 2 and 3. Their orientation was chosen 

conveniently. Known kinematic parameters (input parameters in direct kinematics) are absolute 

rotation angles of the three mobile elements: 10, 20, 30, the rotation angles of the three actuators 

(electric motors, mounted in the rotational kinematic couplings). Determined parameters (output 

parameters) are the three absolute coordinates xM, yM, zM of the point M, ie kinematic parameters 

(coordinates) of the endeffector (which can be a hand, to grabbed, a soldering tip, painted, cut, 

etc). 

To begin one writes vector matrix (A01) which change the coordinates of the origin of the 

coordinate system, by linear moving (displacement) from O0 to O1, when the axes remain parallel 

to each other permanently (see Eq. 2.1). 
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Next we write the rotation matrix T01, which rotates system x1O1y1z1 in rapport with the 

system x0O0y0z0 (it is a 3x3 square matrix; see the relationship 2.2). 
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On the first column (which represents the coordinates of the rotated axis O1x1) it writes 

the coordinates of the unit vector of O1x1 in rapport of the old system x0O0y0z0 (translated into O1 

but without rotation; see the relationship 2.3).  
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On the second column of the matrix T01 it writes the coordinates of the unit vector of the 

rotated axis O1y1 in rapport of the old system x0O0y0z0 (translated into O1 but without rotation 

system; see the relationship 2.4). 
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On the third column of the matrix T01 it writes the coordinates of the unit vector of the 

rotated axis O1z1 in rapport of the old system x0O0y0z0 (translated into O1 but without rotation 

system; see the relationship 2.5). 
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In the elected case (figure 1), the unit vector of the rotated axis O1x1,  has in rapport of 

the old system x0O0y0z0, translated into O1 without rotation, the coordinates given by the column 

unit vector (relationship 2.6).  
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The unit vector of the rotated axis O1y1, has in rapport of the old system of axes x0O0y0z0 

(translated into O1 without rotation), coordinates data unit vector column (relationship 2.7). 
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The unit vector of the rotated axis O1z1 has in rapport of the old system of axes x0O0y0z0 

(translated into O1 without rotation), coordinates data unit vector column (relationship 2.8). 
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See the obtained matrix T01 (relationship 2.2). 

Transition from the coordinate system x1O1y1z1 to the coordinate system x2O2y2z2 is done 

in two distinct phases. The first phase is a translation of the entire system so that (axes being 

parallel with them itself) the center O1 to move into the center O2; then the second stage in which 

it done the rotation of system of axes, and the center O remains fixed permanently.  

The translation of the system from point 1 to the point 2 (see the relationship 2.9) is doing 

by the column vector, matrix A12.  
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On the old O1x1 axis O2 has been moved with d1, on the old axis O1y1 O2 has been 

moved with a2, and on the old O1z1 axis O2 has not been moved. 

The unit vector of the O2x2 axis has in rapport of the old system x1O1y1z1 (translated but 

not rotated) the next coordinates (expression 2.10). 

 

0;0;1  zyx           (2.10) 

 

The unit vector of the O2y2 axis has in rapport of the old system x1O1y1z1 (translated in 

O2 but not rotated) the next coordinates (expression 2.11). 

1;0;0  zyx           (2.11) 

The unit vector of the O2z2 axis has in rapport of the old system x1O1y1z1 (translated in 

O2 but not rotated) the coordinates given by the expression 2.12. 

0;1;0  zyx           (2.12) 

 

The transfer square matrix (the rotation matrix: T12) is writing with relationship 2.13. 

   













































010

100

001

12

zzz

yyy

xxx

T







                       (2.13) 

 

Transition from the coordinate system x2O2y2z2 to the coordinate system x3O3y3z3 is done 

in two distinct phases. The first phase is a translation of the entire system so that (axes being 

parallel with them itself) the center O2 to move into the center O3; then the second stage in which 

it done the rotation of system of axes, and the center O3 remains fixed permanently.  
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First O2 is moving into O3 (axes being parallel with them itself; see the relationship 2.14). 
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Then O3 remains fixed, and the axes of coordinate system are rotating. The unit 

vector of the O3x3 axis has in rapport of the coordinate system x2O2y2z2 (translated in O3 

but not rotated) the  coordinates (see expression 2.15): 

 

0;0;1  zyx           (2.15) 

 

The unit vector of the O3y3 axis has in rapport of the coordinate system x2O2y2z2 

(translated in O3 but not rotated) the β coordinates (see relationship 2.16): 

 

0;1;0  zyx           (2.16) 

 

The unit vector of the O3z3 axis has in rapport of the coordinate system x2O2y2z2 

(translated in O3 but not rotated) the  coordinates (see relationship 2.17): 

 

1;0;0  zyx           (2.17) 

 

In the model from the figure 1 the system x3O3y3z3 has not been rotated in rapport of the 

system x2O2y2z2 (from 2 to 3 held just a translation). In this case the rotation matrix is the unit 

matrix (expression 2.18). 
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The column vector matrix that positions the point M in the coordinate system x3O3y3z3 is 

written with relation 2.19.  
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Coordinates of the point M in the system (2) x2O2y2z2 are obtained by a transformation 

matrix which is having the form (2.20): 

 

MM XTAX 323232            (2.20) 

 

First, is performed the matrix product (relations 2.21): 
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Then, will be calculated X2M (relationship 2.22). 
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Coordinates of the point M in the system (1) x1O1y1z1 are obtained by the relationships 

(2.23-2.25). 

 

MM XTAX 212121            (2.23) 
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Coordinates of the point M in the fixed system x0O0y0z0, are written with the relationships 

(2.26-2.27, 2.27’, 2.28). 

 

MM XTAX 101010           (2.26) 
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X0M is arranged in the form (2.29).  
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The same calculations will be presented now by a direct method (having in view the 

matrix calculations 2.30). 
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It keeps the relationship (2.30’). 
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Now, one performs the matrix multiplications from expression 2.30’ (relationships 2.31-

2.35). 
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                                              (2.31) 
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                                  (2.32) 
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The expression (2.30’) takes the form (2.36). 
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                         (2.36) 

 

By the direct kinematics is obtained Cartesian coordinates xM, yM, zM of the point M (the 

endeffector) in rapport with the three independent angular displacements 10, 20, 30, obtained 

using actuators (relationships 2.37-2.38).  
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Calculations are performed with absolute angular movements (10, 20, 30), but the 

actuators movements do not match (all) with the independent angular movements. They are 

determined as follows (expressions 2.39):  
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



















203032

2021

1010







         (2.39) 

 

The first two actuators relative rotations coincide with the independent rotations (used in 

calculations), but the third actuator relative rotation is obtained as a difference between two 

absolute rotations (expressions 2.39). The velocities and the accelerations are obtained by the 

derivatives of the positions expressions (2.38) in rapport of the time. 

 

3. The inverse geometry and inverse kinematics at a MP-3R 

 

The inverse kinematic [2-8] at the serial robots and systems will be exemplified for the 

3R kinematic model (see the Fig. 2).  

 
Fig. 2 The inverse kinematic at the serial robots and systems, exemplified for the 3R model                                  

 

In inverse kinematics, one already knows the direct link relationships (3.1), and must 

determine the inverse relationships, ie to determine the independent rotations 302010 ,,   of 

the three mobile elements, based on kinematic parameters imposed to the endeffector xM, yM, zM, 

known (forced).  

With the independent determined angles, is then to be calculated the relative rotation 

movements, of the three driving motors, from the rotating couplers [7]. 
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                     (3.1) 

 
Fixed coordinate system was noted with x0O0y0z0. Mobile systems related to the three 

mobile elements (1, 2, 3) have the indices 1, 2 and 3. Their orientation was chosen conveniently. 

System (3.1) is a system of three nonlinear equations (1.1-1.3) with three unknowns (

302010 ,,  ) that must be determined; the system 3.1 equations, are rearranging in form that 

can be seen in the system (3.1 '). 
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It aims to solve the system (3.1') directly, to obtain exact and independent solutions. 

The first step is multiplying expression (1.1) with ( 10sin ) and relation (1.2) with (

10cos ); then is summing the two expressions and resulting trigonometric equation (3.2), which 

can be solved and gives the solutions (3.3-3.4).  

 

321010 cossin aayx MM                   (3.2) 
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               (3.3) 

 

One determines for the first independently parameter ( 10 ), the trigonometric values of 

the functions cos and sin (cos 10  and sin 10 ), (system 3.3). 
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We can directly obtain an angle value, when we know sin and cos functions, using 

expression (3.4). 

 

)arccos(cos)semn(sin 101010       (3.4) 

 

Angle is given directly by the arccos function. 

Sign of sinus (which can be +1 or -1) send the angle in its quadrant, in the top semicircle 

or the bottom. 

The next step is multiplying expression (1.1) with ( 10cos  ) and relation (1.2) with (

10sin ); the two resulted are summed, and one obtains the trigonometric equation (3.5). 
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This relation (3.5) together with (1.3) form the system (3.6), which generates the 

independent parameters ( 3020  and , the last). 

 





















)3.1(sinsin

)5.3(coscos

sincos

3032021

303202

11010







ddaz

dd

dyx

M

MM

                   (3.6) 

 

With notations (3.7) one obtains for the equations system (3.6) the direct and exact 

solutions (3.8).  

The equations (3.6) take the form (3.6’). 
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System (3.6’) can be written in the form (3.6’’). 
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Equations (3.6’’), squared and added together, give the expression (3.6’’’). 

 

20222021 sin2cos2   dCdCK                    (3.6’’’) 
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From equation (3.6’’’) one obtains cos 20 , sin 20 , and 20  (first relations of system 

3.8), and using expressions (3.6’’) it determines then cos 30 , sin 30 , and 30  (last relations of 

system 3.8). 
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4. Conclusions 

 
Kinematics of the serial manipulators and robots can be illustrated by a 3R kinematic 

model, a medium difficulty system, ideal for understanding the phenomenon, but also to specify 

the basic knowledge necessary for starting calculations for systems simpler and more complex.  

The paper presents an original geometrical and kinematic method for the study of 

geometry and determining positions of a MP-3R structure. It presents shortly the MP-3R direct 

and inverse kinematics, the inverse kinematics being solved by an original exactly method. One 

presents shortly an original method to solve the robot inverse kinematics exemplified at the 3R-

Robots (MP-3R).  

If one study (analyze) an anthropomorphic robot with three axes of rotation (which 

represents the main movements, absolutely necessary), we already have a base system, on which 

one can then add other movements (secondary, additional). Calculations were arranged and in the 

matrix form. 
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5. Discussion 

 
Kinematics of the anthropomorphic systems may be solved by a basic model 3R spatial 

by matrix calculations (which were presented on this work), or on a 2R planar, simplified model 

[9]. 
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