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Resumo 

Esse trabalho traz uma discussão a respeito do uso de dois métodos de estimação para  o 

modelo de Regressão Segmentada com pontos de mudança desconhecidos. Os parâmetros 

serão estimados no contexto de inferência Bayesiana e comparados com o modelo 

frequentista desenvolvido por Muggeo (2003). As abordagens serão aplicadas a dados de 

fisiologia do exercício em que existe o interesse sobre os pontos de mudança no consumo 

de oxigênio (VO2) por atletas em função da velocidade na esteira. O desempenho dos 

métodos é investigado em modelos simulados considerando diferentes quantidades de 

pontos de mudança. 

Palavras-chave: regressão segmentada, pontos de mudança, inferência Bayesiana, NUTS, 

Rstan.  

Abstract 

This work brings a discussion about the use of two estimation methods for the Segmented 

Regression model with unknown points of change. The parameters will be estimated in the 

context of Bayesian inference and compared with the frequentist model developed by 

Muggeo (2003). The approaches will be applied to physiological data of the exercise in which 

there is interest in the points of change in oxygen consumption (VO2) by athletes as a 
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function of the speed on the treadmill. The performance of the methods is investigated in 

simulated models considering different amounts of change points. 

Keywords: regression segmented, change point, Bayesian inference, NUTS, Rstan. 

Introduction 

In many practical applications, it is necessary to investigate the effect of one or more 

characteristics on a variable of interest (response) which requires linear multiple regression 

models. For this, it is assumed that the response variable depends linearly on covariates 

(characteristics) in relation to unknown parameters. However, the data may violate the linear 

relationship assumption in a number of ways. For these cases, the usual multiple linear 

regression should not be used. See Quandt (1958), Robson (1964). A common situation of 

breaking the assumption is that in which abrupt changes occur in the linear relationship with 

the response variable after certain values (change points) in the covariables, while it remains 

linear between the consecutive thresholds. The behavior of this type of data can be modeled 

using the so-called Segmented Regression Model. 

In Segmented Regression, the points of change are estimated and are not previously 

fixed (Muggeo, 2003). Moreover, the regression parameters obtained are directly 

interpretable, which does not occur in other approaches for nonlinear effects such as 

polynomial regression, splines, and non-parametric smoothing. Nevertheless, standard 

inference based on likelihood is complicated because the likelihood function is only 

differentiated by parts and the classical conditions of regularity are not satisfied (Feder, 1975, 

Küchenhoff and Carroll, 1997, Seber & Wild, 1989). Also, change points are non-linear 

parameters and standard maximization procedures cannot be used (Seber & Wild, 1989). 

In this work, we will use the Muggeo (2003) approach to describe the model, which 

reduces the problem to an usable linear structure and facilitates the estimation of the points 

of change and can be applied in different practical situations. To illustrate, we consider the 

circumstance that appears in the field of exercise physiology. In ramp test protocols, oxygen 

consumption (VO2) is assessed breath-to-breath, increasing the exercise load at a constant 

rate and at equidistant time intervals for one athlete. Consistent with the existing literature, 

there are up to two points of change (up to three straight segments) and this experiment 

produces behaviors that present one or two straight segments with a positive slope and a 

final segment with a zero slope (Abreu et al., 2017). Hill and Lupton (1925) described that 
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oxygen consumption increases linearly with increasing velocity until reaching a maximum 

value, this justifies the use of a linear model.  

 The first segment generally has a strong positive slope for the physiological adaptation 

at the beginning of the exercise, while the second segment (if any) is characterized by an 

attenuated positive slope due to the linear progression of VO2 consumption with respect to 

exercise load. In both cases, the last linear segment determines the plateau at which VO2 

consumption stabilizes (Abreu et al., 2017).  

The frequentist approach to the problem has already been addressed by Muggeo 

(2003), and is well grounded. The same does not happen with the Bayesian approach. In 

addition, a common situation is when there are not the two breakpoints in the observed data 

(BRINK-ELFEGOUN et al., 2007; LIMA-SILVA et al., 2006; MYERS et al.,1989), that is, 

when the athlete does not reach his plateau. This is difficult to identify and arises the need 

for a model that can address this problem one possibility is the Bayesian approach. 

Objective 

This work aims to estimate the parameters of the Segmented Regression using two 

methods: the frequentist model adopted by Muggeo (2003) and Bayesian inference 

approach. Both methods were applied to actual exercise physiology data and the 

performance is also evaluated through simulation of models with a varying number of change 

points. The Bayesian results are accessed through Rstan, a R package that allows interface 

with Stan. This software uses No-U-Turn Sampler (NUTS), an extension to Hamiltonian 

Monte Carlo that eliminates the need to set a number of steps (Hoffman, 2014). The 

performance of the estimation is also evaluated through simulation of models with a varying 

number of change points from Mean Absolute Percentage Error (MAPE).   

Material and Method 

In the literature, multiple linear regression is widely used to analyze the effect of 𝑝 

explanatory variables 𝑿 = (𝑋!,… ,𝑋!)′, on a response variable, 𝑌. In his context, 𝑛 

observations of vector (𝒀,𝑿) are taken and the following linear model is set: 

𝒚𝒊 = 𝜷𝟎  +  𝑿!𝒊 𝜷𝟏  +  𝜺𝒊, 𝒊 =  𝟏,… ,𝒏,     (1) 

where 𝑦! and 𝑋! represent, respectively, the values of 𝑌and  X in 𝑖-th replica (or subject), 𝛽! 

is the intercept, 𝜷𝟏 = (𝛽!!,… ,𝛽!!) is the coefficient vector that describes the effect of X in𝑌, 
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and 𝜀! is a random error of 𝑖-th or subject,  under the assumptions 𝜀!  ∼ 𝑁(0,𝜎!) and 

𝐶𝑜𝑣(𝜀! , 𝜀!)  =  0, 𝑖 ≠ 𝑗,normally distributed and uncorrelated. This is used to fit 𝜇 =  𝐸[𝒀|𝑿], 

the mean of 𝒀, where 𝑦! =  𝜇 +  𝜀! , 𝑖 =  1,… , 𝑛, and 𝜇 = 𝜷𝟎  +  𝑿′𝛽𝟏.  

Moreover, it is assumed that the effect of 𝑿 on 𝒀 has a single linear behavior, if not, this 

linear model may not be able to represent the data.  An example is the relationship between 

the Oxygen Consumption (VO2 in l/min) and the exercise intensity practiced with successive 

increments of load, Figure 1. Then the evolution of the oxygen consumption of a runner is a 

function of the speed of the conveyor (km/h), which is continuously increased with speed 

increments at equally spaced time intervals but in up to three different segments. 

 

Figure 1: Oxygen Consumption, VO2 (l/min) by speed (km/h) in a treadmill, simulated data. 

 The general model for 𝒀 is given by  

𝒀𝒊 = 𝜷𝟎  +  𝑿′𝜷𝟏  + 𝜷𝟐(𝑿𝒊  −  𝜑𝟏)𝑰{𝑿!!𝟏} − (𝜷𝟏 +  𝜷𝟐) (𝑿𝒊  −  𝜑𝟐)𝑰{𝑿!!𝟐}  + 𝜺, (2) 

where 𝛽! is the intercept is the intercept of the first segment, 𝛽!is the slope of the of the first 

segment, 𝛽! is the increase between the slope of the first and the second segment, and 

𝜙!and 𝜙! are the first and the second change point, respectively. Especially, for the first 

segment the model is given by 

𝒚𝒊 = 𝜷𝟎 +  𝜷𝟏 𝑿𝒊′ + 𝜺𝒊.    (3) 

Similarly, the model for the second segment (if any) is given by 

𝒚𝒊 = (𝜷𝟎 −  𝜷𝟐𝜑𝟏)+  𝑿𝒊′(𝜷𝟏  + 𝜷𝟐)  + 𝜺𝒊.   (4) 
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And the model for the last segment, is given by a constant because of the null slope 

 𝒚𝒊 = 𝜷𝟎  + 𝜷𝟐𝜑𝟏 − (𝜷𝟏 +  𝜷𝟐)𝜑𝟐 + 𝜺𝒊.   (5) 

Also, there is the parameter 𝜎! that must be estimated in the problem. Thus the likelihood 

function, 𝐿(⋅) = 𝑓(𝑦!| ⋅)!
!!! , is  

𝐿(𝛽!,𝛽!,𝛽!,𝜑!,𝜑!,𝜎
!) = !

!!!
𝑒𝑥𝑝 − !! – !

!

!!!
!
!!!   (6) 

where 𝜇 =  𝛽𝟎  +  𝑿′𝜷𝟏  + 𝜷𝟐(𝑿𝒊  −  𝜑𝟏)𝑰{𝑿!𝜑𝟏} − (𝜷𝟏 +  𝜷𝟐) (𝑿𝒊  −  𝜑𝟐)𝑰{𝑿!𝜑𝟐}.  

 For the frequentist approach, the estimation is done via maximum likelihood and the 

estimators are obtained analytically via partial derivatives of 𝐿(⋅). The R package segmented 

(Muggeo, 2008) is used to get the estimates. 

Bayesian estimators are obtained by mean of the posterior distributions (considering 

square loss). Therefore, it is necessary to specify a priori distributions for the six parameters 

of the model: 

𝛽!  ∼  𝑁(𝑚!, 𝑠!), 𝛽!  ∼  𝑁(𝑚!, 𝑠!), 𝛽!  ∼  𝑁(𝑚!, 𝑠!), 

𝜑!  ∼  𝑈𝑛𝑖𝑓(0, 𝑥 ! ), 𝜑!|𝜑!  ∼  𝑈𝑛𝑖𝑓(𝜑!, 𝑥(!)),  (7) 

 𝜎! ∼ 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏) 

where  𝑥(!) is the highest value of the covariate and 𝑚!, 𝑠!,𝑚!, 𝑠!,𝑚!, 𝑠!, 𝑎 e b are constants 

given. 

After specifying the priori distributions the posterior distributions and estimates are 

found using numerical MCMC methods via R package (R Core Team, 2018) Rstan (Stan 

Development Team, 2018) for the exercise physiology data. The convergence criterion was 

evaluated by the coda R package (Plummer at al., 2006). 

One of the motivations for using this model is to apply it to exercise physiology data. 

The specific objective is to determine velocity upon reaching the VO2 plateau. A common 

phenomenon is an observed athlete does not reach the plateau, which would imply in 

changing the number of change points of the model, which is at most two. Therefore, we will 

study the behavior of the parameters of the model (2) in the scenarios where we have two, 

one or no point of change. The performance of the model proposed by Muggeo (2003) and 

Bayesian, proposed in this article, will be compared. 
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Results and Discussion 

The results of the analyzes and simulations were obtained by means of R packages. 

Exercise physiology data from a ramp test with an athlete in which the oxygen consumption 

(VO2) was analyzed as a function of the exercise load (speed), which undergo increments at 

equidistant intervals of time. 

Application	to	actual	data	

In Figure 2, we have the observed data refer to an athlete submitted to 

cardiopulmonary exercise test, an exam performed to identify VO2 plateau. The test is 

performed on a treadmill or exercise bicycle, where the load is increased in linear function 

from time to voluntary exhaustion of the athlete.  263 measurements of VO2 consumption 

(l/min) and speed controlled in the experimente of one athlete were obtained. The points of 

change are not quickly identified visually, but those responsible for the experiment believe 

that the athlete reached the plateau and VO2 consumption presents the three segments 

present in what is expected of the model containing two points of change. 

 

Figure 2: Scatter plot of speed (km/h) × VO2 (l/min). 

Table 1 and Figure 3 presents the results of the estimates for the parameters of the 

model with two points of change for the Bayesian and Muggeo model. Both present 

estimates and similar variations for all parameters. The estimates of the standard deviation of 

the frequentist model presented are obtained via bootstrap, since the parameters 𝜑!and 𝜑! 

can not be estimated directly. This problem does not occur with the Bayesian model. 

Table 1: Estimated parameters for the data. 

Method  𝛽! 𝛽! 𝛽! 𝜑! 𝜑! 𝜎 

Muggeo Estimative -23.53 5.97 -3.53 9.09 12.85 1.70 
S.d. 0.38 0.14 0.20 0.13 0.20 0.25 

Bayesian Estimative -23.48 5.96 -3.51 9.00 12.69 1.73 
S.d. 1.01 0.14 0.20 0.14 0.20 0.08 
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Figure 3:  Comparation between Bayesian and Muggeo estimations. 

Next, in Table 2, the CI, confidence interval of 95%, and the HPD credibility interval of 

95% probability for the parameters for the Bayesian are presented.  

Table 2: Confidence Interval for Muggeo model and High Posterior Density Credibility Interval  for 

Bayesian model. 

	 𝛽!	 𝛽!	 𝛽!	 𝜑!	 𝜑!	 𝜎	
CI(95%) -25,44 -21,61 5,69 6,23 -3,92 -3,13 8,84 9,34 12,47 13,24 1,57 1,86 

HPD(95%)	 -25.41	 -21.52	 5.69	 6.24	 -3.90	 -3.13	 8.67	 9.25	 12.28	 13.09	 1.58	 1.88	
 

Convergence was ascertained for the six parameters by using 2 chains with different 

starting values. After a burn-in period of 1,000 draws the sample consisted of 1,000 draws. 

See Figure 4. 

 
(a) 𝛽!	 (b)	𝛽!	 (c)	𝛽!	

 
(d) 𝜑!	 (e) 𝜑!	 	 (f)	𝜎	

Figure 4: Chain convergence for the parameters. 
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Simulated	data	

All the scenarios have the same settings. 100 replicated data sets were created of 

length 100; the speed was evaluate from 0 to 100; the parameters was fixed at 𝛽! =  −20, 

𝛽! =  20, 𝛽! =  5 and, where applicable,  𝜑! =  20 and 𝜑! =  70. To the Bayesian model the 

prior distribution for the parameters was: 𝜎 ∼ 𝐺𝑎𝑚𝑚𝑎( 0.01;  0.01 ); 𝛽! ∼ 𝑁 0, 100! , 𝑖 =

0, 1, 2; 𝜑! ∼ 𝑈(0, 𝑥(!) = 100) and 𝜑!|𝜑! ∼ 𝑈(𝜑!, 𝑥(!) = 100).  

It can be seen from Table 3, that MAPE values indicate the Bayesian model with better 

results for practically all scenarios. Especially for parameters 𝛽!,𝛽! and 𝛽!, much more 

advantageous for 𝛽!, where the error can be ten times greater. 

 

Table 3: MAPE (%) of the simulation results for multiples scenarios. 

 Nº Change Points Method 𝛽! 𝛽! 𝛽!  𝜑! 𝜑! 𝜎 

𝜎 = 5 

K = 0 
Muggeo 15.43 2.36 - -   -    5.47 
Bayesian 3.73    0.18 - -   -    5.46 

K = 1 Muggeo 98.58 6.67 8.23 0.71 -    6.13 
Bayesian 8.63   0.67   0.91   0.68 -    5.31 

K = 2 
Muggeo 163.45 11.89 14.03 0.75 0.39 6.65 
Bayesian 8.23   0.72 0.97 0.67 0.42 6.15 

𝜎 = 25 

K = 0 
Muggeo 99.21 8.12 - -   -    5.73 
Bayesian 18.38    0.38 - -   -    4.78 

K = 1 
Muggeo 125.76 9.37 11.77 4.24 -    5.78 
Bayesian 40.38   3.68   5.07   3.15 -    5.24 

K = 2 
Muggeo 213.42 14.32 14.77 3.79 1.95 5.68 
Bayesian 47.64   4.21   5.55   4.30   1.94   5.48 

𝜎 = 50 

K = 0 
Muggeo 155.63 16.13 - -   -    6.44 
Bayesian 38.16 0.75 - -   -    6.13 

K = 1 
Muggeo 218.67 17.95 22.99 8.07 -    6.01 
Bayesian 77.79 8.44 11.07 7.69 -    4.98 

K = 2 
Muggeo 234.44 18.72 20.75 7.36 4.19 5.96 
Bayesian 83.35 8.44 11.05 7.46 3.94 6.46 

 

In addition, it was found that the model for not being prepared to actually identify the 

number of change points estimated all parameters. However, again the Bayesian model 

presents advantage because it estimates the points of change non-existent always at the 

end of the scale of values of the covariable, while the estimates of Muggeo have a large 

variation in any value of the scale of the covariate, including the beginning. See Table 4. 
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Table 4: Summary of the estimates of change points in scenarios with less then three segments. 

	 	 𝜎 = 5	 𝜎 = 25	 𝜎 = 50	
k Parameter 1º Q Median 3º Q 1º Q	 Median	 3º Q	 1º Q	 Median	 3º Q	

0 
𝜑! 98.57 98.98 99.21 96.89 97.68 98.10 95.31 96.29 97.07 
𝜑! 99.52 99.60 99.70 98.64	 98.95	 99.11	 97.86	 98.32	 98.68	

1 𝜑! 98.98 99.25 99.41 96.49 97.20 97.82 93.31 94.95 96.20 

 

Conclusions 

Both models are able to estimate the parameters from the application data. Estimation 

values were close, including CI and HPD. For the simulated data, the Muggeo model suffers 

with extremely large values of MAPE and gives advantage to the Bayesian model which, in 

addition to presenting smaller relative errors, does not estimate the points of change that do 

not exist in any location of the scale of values of the covariate, takes them to the end of the 

scale. Thus, it provides a mechanism to identify cases in which the athlete did not reach the 

plateau. 

The test used in the application is performed on a treadmill or exercise bicycle, where 

the load is increased in linear function from time to voluntary exhaustion of the athlete. 

Therefore, there is correlation in the data, usually an AR (1), and we are approaching this 

problem in a new work also with Bayesian approach.  
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Appendix A – Stan code 

data{ 

  // setting observed data: 

    int<lower=1> n;                // sample length 

    vector[n] x;          // independent variable 

    vector[n] y;          // dependent variable 

    real tau;                      // max(x)  

 

    //hyperparameters: 

      real<lower=0> a_sigma;    

      real<lower=0> b_sigma; 

      real<lower=0> mu_beta; 

      real<lower=0> s_beta; 

} 

 

parameters{ 

  vector[3] beta;                     // beta: vector of length 3 

  real<lower=0> psi2;                 // psi2: positive real number 

  real<lower=0, upper = psi2> psi1;   // psi1: real number, less than psi2 

  real<lower=0> sigma;                // sigma: positive real number  

} 
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model{  

  // likehood 

  for(i in 1:n){ 

    if(x[i] < psi1){ 

      y[i] ~ normal( beta[1] + beta[2]*x[i], sigma); 

    } 

    else if(x[i] < psi2){ 

      y[i] ~ normal( beta[1] + beta[2]*x[i] + beta[3]*(x[i]-psi1), sigma); 

    } 

    else{ 

      y[i] ~ normal( beta[1] + beta[2]*x[i] + beta[3]*(x[i]-psi1) 

                    - (beta[2]+beta[3])*(x[i]-psi2), sigma); 

    } 

  } 

    // priori especification 

    beta ~ normal(mu_beta,s_beta); 

    sigma ~ gamma(a_sigma, b_sigma); 

    psi1 ~ uniform(0, tau); 

    psi2 ~ uniform(psi1, tau); 

} 

 

Appendix B –  R code: Simulated Data 

 

Bayesian	model	

 

source(“https://github.com/rvpanaro/SER2019/blob/master/simulastan_Adriana_final.R”

) 

theta = c( -20, 20, -15, 20, 70,  (sigma) ) # real parameters  

MAPE = function(parametro){  # function to estimate the MAPE 

  erro = apply(parametro, 1, function(x){ 
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    out = (theta - x[-7])/theta 

    return(abs(out)) 

  }) 

  final = apply(erro, 1, mean) 

  return(final) 

} 

 

MAPE(param1)*100 # MAPE: simulation with 0 changepoint 

MAPE(param2)*100 # MAPE: simulation with 1 changepoint 

MAPE(param3)*100 # MAPE: simulation with 2 changepoint 

c(sigma, fail1, fail2, fail3) # how many times we've divergente models 

summary(param1[,4]) # distribution of psi1: simulation with 0 changepoint 

summary(param1[,5]) # distribution of psi2: simulation with 0 changepoint 

summary(param2[,5]) # distribution of psi2: simulation with 1 changepoint 

 

tab <- rbind(MAPE(param1)*100, MAPE(param2)*100, MAPE(param3)*100) 

colnames(tab) <- c("beta0", "beta1", "beta2", "psi1", "psi2", "sigma") 

rownames(tab) <- c("k=0", "k=1", "k=2") 

tab 

write.csv(tab, "sigma50_sim.csv") 

	

Muggeo	model	

 

source(“https://github.com/rvpanaro/SER2019/blob/master/simula_muggeo.R”) 

K = out$K 

   

  theta = c(-20, 20, -15, 20, 70, s) 
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  erro_relativo = t(apply(out[,-1], 1, function(x){ 

    (x-theta)/theta 

  })) 

erro_medio = as.data.frame(t(apply(as.matrix(0:2), 1, function(k){ 

    idx = which(K==k) 

    out = apply(abs(erro_relativo[idx,]), 2, mean) 

     

    return(out) 

  }))) 

   

  # rownames(erro_medio) = 0:2 

  out = data.frame(sigma = s ,k = 0:2, erro_medio) 

  print(out) 

  file = paste('sim_Sig_', s, '.csv', sep="") 

   

  write.csv(out , file, row.names = F) 

} 

Appendix C –  R code: Case study (exercise physiology) 

##------------------ Importing Dataset ------------------ 

rm(list=ls(all=TRUE)) # Clear the R workspace 

dat <- read.csv(‘data\\atleta_12.csv', sep = '\t') 

n <- nrow(dat) 

y <- dat$vo2 

x <- dat$vel 

 

##------------------ Graphic ------------------ 

par( mfrow = c(1,1), lwd = 2, cex.lab = 1.5, cex.axis = 1.5, lab = c(8,6,5),  
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mar = c(6,6,3,6), las = 1 ) 

plot(x, y, pch = 19, ylab = "Oxygen consumption (VO2)", xlab = "Speed") 

 

##------------------ Stan ------------------ 

#  load rstan.  

library(rstan) 

 

# avoid recompilations 

rstan_options(auto_write = TRUE) 

 

# run different chains in parallel. 

options(mc.cores = parallel::detectCores()) 

 

##------------------ Prepare data for Stan ------------------ 

# sigma ~ Gamma( a_sigma, b_sigma ) 

a_sigma = .01 

b_sigma = .01 

 

# beta ~ N( mu_beta, s_beta ) 

mu_beta = 0 

s_beta = 100 

 

# psi1 ~ U( 0 , tau ) 

# psi2 ~ U( psi1, tau ) 

tau = max(x) 

 

data = list( n = n, x = x, y = y,  

            a_sigma = a_sigma,  b_sigma = b_sigma, 

            mu_beta = mu_beta,  s_beta = s_beta, 

            tau = tau ) 

##------------------ Modeling ------------------ 

# parameters I want estimate 
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pars = c("beta", "psi1", "psi2", "sigma") 

 

## Bayesian 

output = stan(file = "be_pwlm2.stan", data=data, 

              pars=pars, chains = 2, verbose=FALSE) 

 

print(output, pars=pars)             # print output 

traceplot(output, pars=pars)      # chain convergence 

chain = extract( output )  # extract chains 

param = coda::as.mcmc( cbind( chain$beta, chain$psi1, chain$psi2, chain$sigma ) )  

coda::HPDinterval(param)  # high posterior density credibility interval 

##------------------ Graphic ------------------ 

par( mfrow = c(1,1), lwd = 2, cex.lab = 1.5, cex.axis = 1.5, lab = c(8,6,5),  

mar = c(6,6,3,6), las = 1 ) 

plot(x, y, pch = 19, ylab = "Oxygen consumption (VO2)", xlab = "Speed") 

abline( v = c(9, 12.69), col = 2, lty = 1) 

abline( v = c(9.09, 12.69), col = "blue", lty = 3) 

legend('topleft', legend = c('Propose','Muggeo'), col = c(2, "blue"), lty = c(1,3), lwd=2, 
bg='transparent') 

 


