
 
 

MULTIVARIATE CONDITIONAL QUANTILE DEPENDENCE BETWEEN 
ENERGY PRICES AND CLEAN ENERGY STOCK RETURNS 

Andrea Ugolinia e Juan C. Reboredob 

a. Departament of Quantitative Analysis, Universidade do Estado do Rio de 
Janeiro, Brazil 

b. Department of Economics, Universidade de Santiago de Compostela, Spain. 
 

Resumo 

Avaliamos o impacto dos movimentos quantílicos dos preços da energia nos quantis de 

retornos dos preços das ações de energia limpa usando uma configuração de dependência 

de Vine-cópula multivariada. Para o período de 2009 a 2016, nossas evidências mostram 

que, por um lado, os preços do petróleo e da eletricidade contribuíram principalmente para a 

dinâmica dos retornos de estoque de energia limpa nos EUA e na UE, respectivamente. Por 

outro, os preços do carvão desempenharam um papel menor na elaboração de retornos dos 

preços das ações de energia limpa. Além disso, encontramos evidências de um impacto 

simétrico no preço da energia, de modo que os movimentos extremos de preços de energia 

para cima ou para baixo tiveram um impacto semelhante nos retornos de estoque de 

energia limpa. Esta evidência tem potenciais implicações para a tomada de decisão de 

gerenciamento de risco por investidores de energia e para a tomada de decisão de 

formulação de políticas em relação ao suporte para implantação de energia limpa. 

Palavras-chave: Preços de energia, Retornos dos preços das ações de energia limpa, 

Cópulas 

Abstract 

We assessed the impact of quantile energy price movements on the quantiles of clean 

energy stock price returns using a multivariate vine-copula dependence setup. For the period 

2009- 2016, our evidence shows that oil and electricity prices were major contributors to the 

dynamics of clean energy stock returns in the USA and the EU, respectively, whereas coal 

prices played a minor role in shaping clean energy stock price returns. Furthermore, we 

found evidence of a symmetric energy price impact, so extreme upward or downward energy 

price movements had a similar impact on clean energy stock returns. This evidence has 

potential implications for risk management decision making by energy investors and for 

policy maker decision making regarding support for clean energy deployment. 

Keywords: Energy prices, clean energy stock price returns, copulas 



 
 

 

Introduction 

The United Nations Climate Change Conference, held in Paris in 2015, drew attention 

to the importance of pouring money into the clean energy sector to foster its development 

and meet the challenges posed by climate change. Private investment in renewable energies 

has recently been gaining ground, although maintaining these investments over time crucially 

depends on the profitability and financial risks associated with renewable energy companies. 

The dynamics of energy prices is one of the main energy-related risk factors affecting 

the financial performance of clean energy investment projects, rendering the substitution of 

exhaustible for sustainable energy resources more or less viable on economic grounds (see, 

e.g., Kumar et al., 2012; Reboredo, 2015). Therefore, identifying how different energy prices 

impact on the value of renewable energy companies is of particular interest to investors 

wishing to assess the sensitivity of their renewable energy investments to energy prices, in 

particular, when energy prices are especially low or high. Policy makers, in the interest of 

optimally managing public investment efforts, are also interested in how fluctuations in 

energy prices shape renewable energy stock prices, as market forces driving energy prices 

may provide investors with market-based incentives to invest in green energies. 

Previous empirical studies have scrutinized the link between clean energy stock prices 

and oil prices. Henriques and Sadorsky (2008) and Managi and Okimoto (2013) reported 

evidence of causality from crude oil prices to renewable energy stocks listed on US stock 

exchanges. Reboredo et al. (2017) studied co-movement and causality between oil prices 

and renewable energy stock prices at different time scales, finding that dependence 

strengthened towards the long run, and that causality was non-linear and mainly ran from 

energy indices to oil prices at different time horizons. Kumar et al. (2012) found that while oil 

prices, interest rates and technology stock price fluctuations impacted clean energy stock 

prices, carbon allowance prices had no significant impact. Broadstock et al. (2012) reported 

that oil price dynamics impacted on energy stocks in China and that the correlation increased 

significantly after the onset of the recent global financial crisis. 

Another strand of the literature has studied the transmission of volatility between oil 

prices and renewable energy stock prices. Sadorsky (2012a), finding evidence of volatility 

spillovers from oil prices to renewable energy stock prices, suggested that oil is a useful 

hedge for clean energy stocks. Wen et al. (2014) also studied the volatility spillovers for 

Chinese renewable energy stock prices, finding that renewable energy and fossil fuel stocks 



 
 

exhibited significant mean and volatility spillovers, with renewable energy stocks carrying 

more risk than fossil fuel stocks. Sadorsky (2012b) found that oil prices increased the beta of 

renewable energy companies. More recently, Reboredo (2015) reported that oil price 

dynamics play a prominent role in shaping downside and upside risk in renewable energy 

companies. 

Objective 

Our study contributes to the extant empirical literature by considering the impact of 

prices for different kinds of energy — oil, gas, electricity and coal — on new energy stock 

prices in a multivariate setup, in which we measured dependence between different energy 

prices and renewable stock prices, taking into account direct and indirect price transmission 

channels. More specifically, we characterized the multivariate dependence structure between 

oil, gas, electricity and coal prices and clean energy stock prices using vine copula models 

(Joe, 1996), which characterize high-dimensional joint distributions using a hierarchical 

structure comprised of a set of bivariate copulas that capture dependence between two 

variables. This empirical approach offers modelling flexibility, as the marginal models and 

multivariate dependence structures are modelled independently. In particular, the conditional 

quantile dependence between renewable energy price fluctuations on energy prices — and 

vice versa — could be assessed, taking into account both direct and indirect channels of 

influence. This conditional dependence information could also be used to compute the 

contribution of each energy price change to clean energy stock price movements. 

Material and Method 

Let to , tg , tc  and te  be the (log) change in oil, gas, electricity and coal prices, 

respectively, and let tr  be the (log) change in the renewable energy stock price. The impact 

of a fluctuating energy price (for oil, say) of a size given by its β -quantile on the α -quantile of 

the clean energy stock price return distribution, given the prices for other energy prices, can 

be measured as: 

 t t tr |o o
t t t t t, ,t ,tP(r q | o q , g ,c ,e )α β β≤ ≤ = α , (1) 

where t tr |o
, ,tqα β  is the conditional α -quantile of renewable energy returns at time t  and 

where to
,tqβ  is the unconditional β -quantile of oil prices, which can be obtained from the 

inverse of their distribution functions F  as: 
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We can thus measure the impact of oil price fluctuations of different sizes on renewable 

energy stock prices under different market circumstances, as given by the stock price 

quantiles. We can also assess the contribution of oil price movements to renewable energy 
prices at the α -quantile by considering the difference between its conditional and 

unconditional values: 

 t t t
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where t
t

r
,t rq F ( )1−

α = α  is the unconditional α -quantile of the return distribution. Note that, 

when
to 0γ = , oil price changes have a negligible impact on stock returns, and when 

to ( )0 0γ < > , oil price movements move stock returns in the same (opposite) direction. 

Similarly, we can consider the quantile impact arising from other energy price changes, 

namely, tg , tc  and te , and compute 
tgγ , 

tcγ  and 
teγ , respectively. As the values of values 

of γ  could have different signs, we can normalize the contribution of energy price changes to 

stock returns as: 

 t

t

t t t t

o
o

o g c e

ˆ
γ

γ =
γ + γ + γ + γ

. (5) 

Note that now, by construction, the values of γ s lie between 0 and 1. 

We can also summarize the contribution of energy price movements to renewable 

energy prices over the time period t 1, , N= K  as: 

 
t t

N

o o
t

ˆ
N 1

1
=

γ = γ∑ . (6) 

According to Eqs. (2)-(4), the computation of the contribution of energy prices to 

renewable energy stock returns requires knowledge of the conditional and unconditional 

distributions of renewable stock prices and energy prices. Their multivariate distribution can 

be obtained from a multivariate copula function, given that the Sklar’s (1959) theorem states 

that: 



 
 

 ( ) ( )t t t t t r t o t g t c t e tF r , o , g , c , e C F (r ), F (o ), F (g ), F (c ), F (e )= , (7) 

where C( )⋅  is a copula function and where ( )i iF x  are the marginal unconditional 

distribution functions of the variable ix , for t t t t ti r , o , g , c , e= . If iF  and C  are differentiable, 

then the joint density function f can be decomposed as the product of the marginal densities 

i i(x )f  and the multivariate copula density c( )⋅  as: 

( ) ( )t t t t t r t o t g t c t e t r t o t g t c t e tr , o , g , c ,e (r ) (o ) (g ) (c ) (e ) c F (r ),F (o ),F (g ),F (c ),F (e )f f f f f f= , (8) 

where the density copula captures dependence between each ix . Different copula 

specifications account for different symmetric and asymmetric dependence structures. 

Eq. (1) can now be expressed in terms of the copula function as: 

 ( ) ( )( )t t t
t t t t t t t t t t t t t

r |o o
r ,o |g ,c ,e r |g ,c ,e o |g ,c ,e, ,t ,tC F q ,F q

2α β β = αβ , (9) 

where 
t t t t tr ,o |g ,c ,eC (.) , that is, the conditional bizvariate copula between oil and 

renewable energy returns, can be obtained by partially deriving the copula function in Eq. (7). 

Next, given the values for α  and β , and given that ( )t
t t t t

o
o |g ,c ,e ,tF q

2 β = β , we can solve from the 

copula specification in Eq. (9) to obtain ( )t t
t t t t

r |o
r |g ,c ,e , ,tF qα β . We obtain t tr |o

, ,tqα β  by inverting the 

conditional distribution function of tr , which can be obtained from the conditional copula. The 

same procedure was applied to the other energy prices in order to obtain their conditional 

quantiles. 

We characterized multivariate dependence using a vine copula, which factorizes 

multivariate copula density in terms of a successive mixing of 5(5-1)/2 bivariate linking 

copulas with a hierarchical structure (see Joe, 1997; Bedford and Cooke, 2001, 2002; 

Kurowicka and Cooke, 2006; Aas et al., 2009). Specifically, we considered the C-vine, D-vine 

and R-vine copulas. The five-dimensional C-vine is given by: 
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where j, j i|1, , j 1c + −K  is the conditional copula and where the conditional distribution 

function of the ix  variable, given the variable jx , is given by (Joe, 1997): 
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For the C-vine copula, we have a star-shaped hierarchical tree structure, where in the 

first tree — indicated by the second term in Eq. (10) — one variable plays a pivotal role. The 

tree is expanded in such a way that the nodes of each tree are configured by the edges of 

the previous tree. Dependence in successive trees is measured with respect to the pivotal 

variables using the conditional bivariate copulas as indicated in the third term in Eq. (10). The 

pivotal variable is identified as the variable that maximizes the sum of pairwise dependencies 

as measured by Kendall’s tau. 

The five-dimensional density function of the D-vine model is given by: 

( ) ( ) ( ) ( )( )

( ) ( )( )

5 5 1

1 2 3 4 5 k k h,h 1 h h h 1 h 1
k 1 h 1

5 j5 1

i,i j|i 1, ,i j 1 i i 1 i j 1 i j i 1 i j 1
j 2 i 1

x , x , x , x , x f x c F x , F x

c F x | x , , x , F x | x , , x

f

                      

−

+ + +
= =

−−

+ + + − + + − + + + −
= =

= ∏ ∏

∏∏ K K K
.(12) 

In the D-vine copula, variables are treated equally and conditional dependence is 

determined by the variable ordering of the first tree, which is determined so as to capture as 

much dependence as possible (see Nikoloulopoulos et al., 2012). 

Finally, the five-dimensional density function of the R-vine model is given by: 
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where iE  denotes the nodes and where D(e)x  is the subvector of x , indicated by the 

indices contained in the conditional set D(e) . We chose the appropriate R-vine structure 

using the maximum spanning tree that solved the following optimization problem for each 

tree: 

 
{ }

ij
edges e i, j  in spanning t ree

ˆmax
=

t∑ , (14) 



 
 

where ijt̂  denotes the pairwise empirical Kendall’s tau and a spanning tree is a tree on 

all nodes. Marginal models in Eq. (9) are given by an average ARMA (p,q) with TGARCH 

components. 

Results and Discussion 

We used daily data for energy prices for the EU and the USA (expressed in EUR and 

USD, respectively) for the period 2 January 2009-1 September 2016. The data were sourced 

from Bloomberg as follows: (a) for crude oil, the Brent and WTI benchmark prices for the EU 

and the USA, respectively; (b) for gas, the UK natural gas futures for the EU and natural gas 

futures (NYMEX) for the USA; (c) for coal, the ARA (Argus/McCloskey) for Europe and the 

Nymex Clearport Central Appalachian Coal Futures for the USA; and (d) for electricity, the 

Phelix index for the EU and the NYMEX PJM Electricity futures for the USA. Finally, for 

renewable energy prices, we used the European Renewable Energy Index (ERIX) for the EU 

and the ECO Clean Energy Index (ECO) for the USA. Figure 1 depict the temporal dynamics 

of energy and renewable energy prices in the EU and the USA, respectively. Both figures 

show that renewable energy prices co-moved with energy prices, although the size and 

timing of co-movement differed according to market and energy price and over time. 

Likewise, the size and dynamics of price volatility also differed across countries. 

 

  

Figure 1 – Energy and renewable energy prices in the EU and USA. 

Source: Reboredo and Ugolini, 2018 

 

Figures 2 and 3 depict the estimated multivariate dependence structures for the EU 

and the USA, respectively. In both cases, the best fit was offered by the C-vine copula 

structure. Electricity prices played a pivotal role in the EU, whereas oil prices were central in 

the USA. Our estimates also show that the Student-t copula was the best fitting bivariate 



 
 

copula in most cases, indicating that symmetric dependence characterized multivariate 

dependence between energy price movements and clean energy stock returns. 
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Figure 2 – Vine-copula structure for the EU. 

Source: Reboredo and Ugolini, 2018 
 

Tree 1 Tree 2 

  

Tree 3 Tree 4 

 
 

Figure 3 – Vine-copula structure for the USA. 

Source: Reboredo and Ugolini, 2018 

From the C-vine hierarchical structure, the best pair-copula fit and marginal estimates, 

we computed the conditional and unconditional quantiles in Eqs. (2)-(3) for oil, gas, electricity 

and coal price fluctuations and then, using Eqs. (4)-(6), we measured the contribution of the 



 
 

β -quantile of those energy price fluctuations to clean energy stock prices. We considered 

different values for the β -quantile: (a) extreme downward and upward energy price changes, 

since these are crucial for investors in terms of downside and upside risk management of 

renewable energy investments, so 0.05β =  and 0.95β =  (note that for 0.95β =  we have, e.g., 

for oil, that to
t ,tP(o q ) .0 05β≥ = , so t

t

o
o,tq F ( . )11 0 05−

β = − ); and (b) moderate downward and 

upward energy price movements, so 0.25β =  and 0.75β = . We also measured the impact of 

the β -quantile energy price changes on the α -quantile of clean energy price changes by 

considering that α = β , thereby considering the impact of extreme (or moderate) energy 

price movements on extreme (or moderate) values of clean energy stock returns. 

Tables 1 and 2 report results of the effect of energy price fluctuations of different sizes 

on the corresponding clean energy stock return quantile as per Eq. (4). The empirical 

evidence for the EU (Table 1) indicates that, at different quantiles of energy price changes, 

electricity prices are the main driver of changes in the ERIX index and that oil and gas prices 

play a less prominent role than coal prices in affecting clean energy stock returns. 

Furthermore, we observed that extreme or moderate downward movements in electricity, 

gas and coal prices had a negative impact on clean energy stock returns, whereas the 

opposite occurred for extreme or moderate upward movements in energy prices; this 

evidence is consistent with the positive dependence of electricity, gas and coal returns on 

ERIX reported in Figure 2. However, for oil we observed a positive impact of extreme 

downward movements on clean energy stock returns and a negative impact for upward price 

movements that is consistent with the conditional negative dependence between ERIX and 

Brent indicated in tree 2 in Figure 2. Strikingly, the estimated impact of energy price 

fluctuations gradually moderated and converged to zero as the size of the energy price 

change approached its median value. Our evidence also points to the fact that the impact of 

extreme upward or downward energy price movements on clean energy stock returns is 

symmetric for all energy prices; this evidence is consistent with the symmetric dependence 

given by the Student-t copula. 

  



 
 

Quantile   Electricity Brent Coal Gas 
0.05 Mean -0.018 0.002 -0.007 -0.004 
 Std. Dev. 0.005 0.006 0.009 0.009 
 Max -0.011 0.020 0.003 0.006 
 Min -0.060 -0.097 -0.118 -0.107 
0.25 Mean -0.005 0.001 -0.002 -0.001 
 Std. Dev. 0.002 0.003 0.003 0.004 
 Max -0.002 0.017 0.006 0.009 
 Min -0.019 -0.046 -0.052 -0.044 
0.75 Mean 0.005 -0.001 0.002 0.001 
 Std. Dev. 0.001 0.003 0.003 0.004 
 Max 0.018 0.042 0.048 0.041 
 Min 0.002 -0.017 -0.006 -0.008 
0.95 Mean 0.016 -0.002 0.006 0.003 
 Std. Dev. 0.004 0.006 0.008 0.008 
 Max 0.054 0.088 0.107 0.097 
 Min 0.009 -0.019 -0.003 -0.006 

Table 1 – Summary statistics for difference between conditional and unconditional clean 

energy quantiles for the UE. 
Source and Note: The table reports summary statistics for differences between 
conditional and unconditional ERIX quantile returns as per Eq. (4). Reported are 
the means, standard deviations (Std. Dev.), maximum (Max) and minimum (Min) 
values over the sample period. Reboredo and Ugolini 2018 
 

Quantile   Electricity Brent Coal Gas 
0.05 Mean 0.003 -0.037 0.003 0.003 
 Std. Dev. 0.020 0.014 0.018 0.019 
 Max 0.151 -0.022 0.153 0.146 
 Min -0.212 -0.147 -0.165 -0.225 
0.25 Mean 0.000 -0.013 0.000 0.001 
 Std. Dev. 0.014 0.005 0.014 0.014 
 Max 0.121 -0.008 0.122 0.120 
 Min -0.107 -0.050 -0.105 -0.099 
0.75 Mean -0.001 0.009 -0.001 -0.002 
 Std. Dev. 0.012 0.004 0.012 0.012 
 Max 0.076 0.038 0.075 0.070 
 Min -0.125 0.005 -0.127 -0.124 
0.95 Mean -0.003 0.026 -0.003 -0.003 
 Std. Dev. 0.014 0.010 0.013 0.014 
 Max 0.146 0.103 0.113 0.154 
 Min -0.120 0.015 -0.121 -0.115 

Table 2 – Summary statistics for difference between conditional and unconditional clean 

energy quantiles for the USA. 
Source and Note: The table reports summary statistics for differences between 
conditional and unconditional ECO quantile returns as per Eq. (4). Reported are 
the means, standard deviations (Std. Dev.), maximum (Max) and minimum (Min) 
values over the sample period. Reboredo and Ugolini, 2018. 
 
As for the USA, the empirical evidence (Table 2) indicates that oil prices account for 

the greatest impact of energy prices on the ECO index, whereas electricity and coal prices 

play a secondary role. Likewise, we observed that extreme or moderate downward 

movements in oil had a negative impact on clean energy stock returns, whereas the opposite 

occurred for extreme or moderate upward movements in the other energy prices. This 



 
 

response in clean energy stock returns is consistent, first, with the evidence regarding the 

positive dependence between oil and clean energy stock returns reported in Figure 3, and, 

second, with the low and negative dependence (see Figure 3) between the other energy 

prices and the ECO index. Conversely, we estimated a positive impact of extreme upward 

movements in oil prices and a negative impact of the remaining energy prices on clean 

energy stock returns. As happened with the ERIX index, we observed that the impact of 

energy prices gradually diminished as the energy price change approached its median value. 

We also found symmetry, as the impact of extreme upward or downward energy price 

movements were similar in size, a result that is consistent with the symmetric dependence 

given by the Student-t copula. 

Tables 3 and 4 report empirical evidence for the normalized contribution of energy 

price fluctuations to stock returns as per Eq. (5). Empirical estimates for the EU indicate that 

extreme upward or downward changes in electricity prices accounted for about 60% of 

extreme ERIX fluctuations caused by extreme energy price fluctuations. Remarkably, the 

contribution of electricity price changes to fluctuations in clean energy returns moderated as 

electricity price movements approached the median value, reflecting a U-shaped curve 

across quantiles. Coal prices accounted for 18% of extreme ERIX fluctuations, whereas 

Brent and gas prices explained about 12% and 11%, respectively. Moreover, the contribution 

of Brent and gas price changes to fluctuations in clean energy returns strengthened as the 

price movement moved towards the median value, so the contribution of these energy prices 

to fluctuations in clean energy prices reflected an inverted U-shaped curve across quantiles. 

The contribution of coal prices remained almost constant across quantiles. We observed that 

the contribution of all the energy prices to extreme ERIX fluctuations was symmetric. 

  



 
 

Quantile   Electricity Brent Coal Gas 
0.05 Mean 0.59 0.12 0.18 0.11 
 Std. Dev. (0.14) (0.06) (0.11) (0.09) 
0.25 Mean 0.48 0.20 0.17) 0.15 
 Std. Dev. (0.13) (0.10) (0.11) (0.09) 
0.75 Mean 0.47 0.22 0.16 0.15 
 Std. Dev. (0.12) (0.11) (0.11) (0.09) 
0.95 Mean 0.58 0.13 0.18 0.11 
 Std. Dev. (0.13) (0.06) (0.11) (0.09) 

Table 9 – Contribution of energy prices to changes in ERIX. 

Source and Note: The table reports summary statistics for differences between 
conditional and unconditional ERIX returns. Reported are the means and 
standard deviations (Std. Dev.) over the sample period. Reboredo and Ugolini, 
2018. 
 

Quantile   Electricity WTI Coal Gas 
0.05 Mean 0.14 0.58 0.13 0.14 
 Std. Dev. (0.06) (0.17) (0.06) (0.06) 
0.25 Mean 0.19 0.44 0.19 0.18 
 Sd. Dev. (0.07) (0.21) (0.08) (0.08) 
0.75 Mean 0.20 0.41 0.20 0.20 
 Std. Dev. (0.07) (0.21) (0.08) (0.08) 
0.95 Mean 0.15 0.56 0.14 0.15 
 Std. Dev. (0.06) (0.17) (0.06) (0.06) 

Table 10 – Contribution of energy prices to changes in ERIX. 

Source and Note: The table reports summary statistics for differences between 
conditional and unconditional ECO returns. Reported are the means and standard 
deviations (Std. Dev.) over the sample period. Reboredo and Ugolini, 2018. 
 

Assessments of the contribution of energy price fluctuations to the ECO index in the 

USA (Table 4) reveal that oil prices accounted for most of the upward or downward 

movements in the ECO index caused by extreme movements in energy prices and also 

show that this contribution was symmetric. Likewise, the contribution of oil price changes to 

fluctuations in ECO returns moderated as oil price changes moved towards the median 

value, displaying thus a U-shaped form across quantiles. Moreover, we found that the 

contribution of gas and electricity prices was similar in size (about 14%) and symmetric, 

whereas the contribution of coal prices was slightly less but also symmetric. We also 

corroborated that the contribution of those energy price fluctuations increased as their size 

approached median values, again showing an inverted U-shape across quantiles. Finally, we 

observed that the contribution of all energy prices to extreme fluctuations in the ECO index 

was symmetric. 

Overall, our evidence indicates that electricity and oil prices are the main contributors 

to fluctuations in clean energy returns in the EU and USA, respectively, mainly when those 

prices experience extreme movements. However, when fluctuation in electricity and oil 



 
 

prices are moderate, they lose their prominence and the fluctuations of other energy price 

acquire greater importance. 

Our evidence for the EU and USA indicates that green investors should pay attention 

to electricity and oil price fluctuations, respectively, as they are the main contributors to 

downside and upside risk associated with clean energy investments. Given that these 

investments are acquiring importance in individual and institutional investor portfolios, 

specific energy price risk factors should be taken into account when making risk 

management decisions. Likewise, our evidence for oil, gas and coal prices in the UE and for 

gas, coal and electricity prices in the USA indicate that those energy prices make a limited 

contribution to extreme risk, even though their contribution, and thus their relevance as risk 

generators, increases as their price fluctuations approaches the centre of the distribution. 

Furthermore, our evidence of positive dependence between clean energy stock returns 

and most of the energy prices studied indicate that energy markets offer limited hedging 

opportunities for investors in clean energies. Our empirical evidence on symmetric tail 

dependence and symmetric energy price contribution to extreme clean energy stock price 

fluctuations would suggest similar risk management strategies in short and long positions in 

clean energy stocks and has implications for the pricing of renewable assets in terms of 

energy price movements. Thus, clean energy investors in the USA and in the EU should 

receive a greater risk premium for supporting an oil price and electricity price risk, 

respectively. Tail dependence also has important implication for clean energy safety-first 

investors (that is, investors who minimize the probability of a loss that may drive them out of 

business; see Susmel, 2001). They should, thus, pay specific attention to oil price swings 

when investing in the USA and electricity price swings when investing in the EU. 

Our evidence shows that energy prices — mainly electricity prices in the EU and oil 

prices in the USA — play an active role in shaping the profitability of clean energy 

investments. Hence, the market forces pushing electricity prices in the EU or oil prices in the 

USA up (or down) provide market-based incentives to invest in the green economy. 

Specifically, when those energy prices are high, investment in clean energy gains 

attractiveness as the profitability of renewable energy projects increases. In these 

circumstances, since the market provides adequate incentives to the deployment of clean 

energy investments, policy makers can relax public expenditure on clean energy projects. 

Contrarily, when energy prices are low, the value of clean energy companies decreases, 

which means that the energy market is unable to provide adequate incentives to develop 

clean energies. In this case, policy makers need to redouble efforts to support the 



 
 

deployment of clean energies. Policies should therefore be implemented asymmetrically, that 

is, supporting the profitability of clean energy companies when energy prices are low and 

relaxing this support when energy prices are high. Our analysis should also enable 

governments to identify the type and size of energy price risk to which it should pay greater 

attention. 

Conclusão 

Deployment of renewable energies as a way to fight climate change has spurred the 

interest of private investors in clean energies as a new alternative investment opportunity. 

Since energy prices are an important factor in determining the profitability of clean energy 

companies, investors need to assess the energy price risk so as to accurately gauge the risk 

of investing in environmentally friendly companies. Likewise, policymakers need to identify 

how energy prices shape clean energy stock prices in order to make policies more effective, 

that is, by combining their efforts with market incentives to encourage investors to pour 

money into clean energies. 

We characterized multivariate dependence between oil, gas, electricity and coal prices 

and new energy stocks and measured the quantile impact of energy price fluctuations on the 

quantiles of clean energy stock returns. For the period January 2009-September 2016, our 

evidence for the EU and for the USA indicates that the multivariate dependence structure 

was given by a C-vine hierarchical structure and also that electricity and oil prices played a 

central role in determining conditional dependence in the EU and the USA, respectively. The 

analysis of quantile impacts revealed that movements in energy prices played an important 

role in renewable energy price dynamics, especially when energy prices experienced large 

downward or upward fluctuations. Furthermore, electricity prices in the EU and oil prices in 

the USA were the main contributors to fluctuations in new energy stock prices. Our empirical 

results also revealed that extreme upward or downward energy price movements had a 

similar impact on stock prices, and that, in general, the contribution of energy price changes 

to fluctuations in clean energy prices moderated as the size of the energy price change 

approaches the median value, displaying thus, a U-shaped curve across quantiles. 

Our evidence has implications for both investors and policy makers. Thus, investors 

should pay particular attention to extreme energy price fluctuations — especially electricity 

prices in the EU and oil prices in the USA — as they generate downside or upside risks. As 

for policy makers, in implementing their policies, they need to be aware that downward 

energy price movements discourage incentives to investments in renewables, whereas 



 
 

upward energy price movements could boost renewable investment without specific support 

from energy policies. 
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Script: 

rm(list=ls(all=TRUE)) 

 

setwd("/Users/andreaugolini/Desktop/Work/Energy Network USA-EU") 

 

################################################### 

#### 1 - Emparelhamento das datas sobre os dados #### 

################################################### 

 

# Cargar estas funciones 

 

source("R/Functions/dataset-20091007.R")     ## General datasets managing 

source("R/Functions/text-functions-20090305.R")                  ## General txt managing 

source("R/Functions/BLManage-Functions-dev.R")    ## Specific Bloomberg datasets 

management 

 

file.data <- "Data/Database_US.csv"  # Nombre do File .CSV 

dir.out   <- "Data/Single" 

 

#### Split data 

data <- .BL.split.data(file = file.data, dir.out = dir.out,  

http://www.jstatsoft.org/v52/i03/


 
 

                       format = "%d/%m/%y", check.closedDays = TRUE) 

 

 

file.data <- "Data/Database_EU.csv"  # Nombre do File .CSV 

dir.out   <- "Data/Single_EU" 

 

#### Split data 

data <- .BL.split.data(file = file.data, dir.out = dir.out,  

                       format = "%d/%m/%y", check.closedDays = TRUE) 

 

source("R/Functions/YFManage-Functions-dev.R")    ## Specific datasets management 

 

file.out <- "Data/Data-US-Merged.txt"  # Nombre del file de output 

date.range <- c(20090101, 20160908) # escoje la fecha de inicio y de fin de la muestra 

 

info <- c( 

  "WTI_US","Data/Single/CL1-Comdty-data.txt",1, 

  "Elec_US","Data/Single/CYMEPJN3-Index-data.txt",1, 

  "Gas_US","Data/Single/NRGSNG3-Index-data.txt",1, 

  "Coal_US","Data/Single/NRGSQZ3-Index-data.txt",1, 

  "Ren_Index_US","Data/Single/ECO-Index-data.txt",1, 

  "Brent_EU","Data/Single_EU/CO1-Comdty-data.txt",1, 

  "Elec_EU","Data/Single_EU/GT1-Comdty-data.txt",1, 

  "Gas_EU","Data/Single_EU/QR1-Comdty-data.txt",1, 

  "Coal_EU","Data/Single_EU/NN1-Comdty-data.txt",1, 

  "Ren_Index_EU","Data/Single_EU/ERIX-Index-data.txt",1) 

info <- matrix(data = info, ncol = 3, byrow = TRUE) 



 
 

colnames(info) <- c("ticker", "file", "append") 

 

#### Build indicators 

.merge.all(fileInfo = info, date.range = date.range, file.out = file.out) 

 

########################## 

### Data & Statistics  ### 

########################## 

setwd("/Users/andreaugolini/Desktop/Work/Energy Network USA-EU") 

 

rm(list=ls(all=TRUE)) 

 

source("R/Functions/ManageData_function.R") 

source("R/Functions/stat.descriptive_function.R") 

 

data<-read.table("Data/Data-US-Merged.txt", header=T, na.strings="NA",stringsAsFactors = 

FALSE) 

colnames(data)<-gsub('.close','',colnames(data)) 

 

yieldsData<-.rent(data,data$date) 

rent=as.matrix(yieldsData$r) 

 

Matcorr=cor(yieldsData$r[,-1]) 

 

## Statistics 

Statarent=.stat.descriptive.all(data=yieldsData$r) 

 



 
 

## Print Results in Excel 

 

write.csv(data, "Results/Price.csv") 

write.csv(rent, "Results/rent.csv") 

write.csv(Statarent, "Results/stata.csv") 

write.csv(Matcorr, "Results/Matcorr.csv") 

 

################### 

### Vine Copula ### 

################### 

 

rm(list=ls(all=TRUE)) 

 

Umatrix<-read.table("Data/U_data.txt", header=T, na.strings="NA",stringsAsFactors = 

FALSE) 

UmatrixUS <- Umatrix[c(1,2,3,4,5)] 

UmatrixEU <- Umatrix[c(6,7,8,9,10)] 

 

Umatrix <- UmatrixUS 

name=colnames(Umatrix) 

 

########################### 

## Select Structure Vine ## 

########################### 

 

library(CDVine) 

library(VineCopula) 



 
 

 

###################### 

## R-Vine structure ## 

###################### 

 

Rvine=RVineStructureSelect(Umatrix, familyset=c(1:10),type=0,rotation=F) 

RVM=RVineMatrix(Rvine$Matrix,Rvine$family,Rvine$par,Rvine$par2) 

 

RAIC=RVineAIC(Umatrix,RVM) 

RBIC=RVineBIC(Umatrix,RVM) 

RAIC 

RBIC 

ll <- RVineLogLik(Umatrix, RVM, separate = FALSE) 

ll$loglik 

 

RVM$names<-colnames(Umatrix) 

P=RVineTreePlot(data=NULL,RVM,tree="ALL",type=1,edge.labels=c("family","theotau"),P=N

ULL,method = "mle",legend = TRUE) 

 

 

###################### 

## C-Vine structure ## 

###################### 

#selection Best Canonical Vine Copula   

Cvine=RVineStructureSelect(Umatrix,familyset=c(1:10) ,type=1,rotations = F) 

 

Matrix=Cvine$Matrix 



 
 

fam=Cvine$family 

par=Cvine$par 

par2=Cvine$par2 

CVM=RVineMatrix(Matrix,fam,par,par2) 

 

C_AIC=RVineAIC(Umatrix,CVM) 

C_AIC 

C_BIC=RVineBIC(Umatrix,CVM) 

C_BIC 

ll <- RVineLogLik(Umatrix, CVM, separate = FALSE) 

ll$loglik 

 

Tau=RVinePar2Tau(CVM) 

CVM$names<-colnames(Umatrix) 

 

P=RVineTreePlot(data=NULL,CVM,type=1,tree="ALL",edge.labels=c("family","par"),legend=

T,interactive = T) 

 

###################### 

## D-Vine structure ## 

###################### 

 

#selection Best Canonical Vine Copula   

Dvine=CDVineCopSelect(Umatrix, familyset=c(1:7,9,13:14), type=2,selectioncrit="AIC") 

 

sel<-data.frame(Dvine) 

family=sel[,1] 



 
 

par=sel[,2] 

par2=sel[,3] 

 

D_AIC=CDVineAIC(Umatrix,family,par,par2,type=2) 

D_AIC 

D_BIC=CDVineBIC(Umatrix,family,par,par2,type=2) 

D_BIC 

logLik1 = CDVineLogLik(Umatrix,family,par,par2,type=2) 

sum(logLik1$ll) 

logLik1$loglik 

 

#Plot trees of a Canonical Vine Copula 

CDVineTreePlot(Umatrix,family,par,par2,type=2,edge.labels=c("family","emptau")) 
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