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Introduction 

According to Lorentz (2012), Bernstein's polynomials (BP) were introduced by          

Bernstein around 1912 as an alternative to extreme value theorem proof. The Weierstrass’             

extreme value theorem, in turn, has been an important tool and has been used for many                

applications in calculus and analysis. The theorem is widely used to state that any              

continuous function over an interval [a, b] in is limited and, in addition to, there is a        R           

maximum value and a minimum value in that interval. 

First, Bernstein showed there exists two reals and such that . So,       k   K     (x)k ≤ Bm ≤ K   

the mathematician proved that if is uniformly continuous on then .     (x)f      0, ][ 1   (x) (x)lim
m →∞

Bm = f  

Similarly, kernel functions, approximation splines and Bernstein's Polynomials can used to           

approximate functions. 

In 2012, Osman and Gosh proposed baseline risk non-parametric modelling for           

survival proportional hazards regression model. The authors approximate baseline risk          

function using BP and provide, among other results, proofs on asymptotics. The likelihood             

log-concavity property shown in this article leads to less costly computational procedures to             

find bayesian estimators and guarantees the uniqueness of maximum likelihood estimator. 

Bayesian inference isn’t straightforward as numerical optimization methods already         

implemented in R that ease frequentist approach. However, this was elegantly done based             

on gibbs sampling and Adaptive Rejection Metropolis Sampling (ARMS) algorithm.  

Goals 

Present proportional hazards model’s base risk estimates and related functions based           

on Bernstein Polynomials (BP). Consequently, log likelihood is based on non-parametric BP            

estimates and parametric estimates alternatively to Cox’s model partial likelihood. For this,            
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an application is presented making use of larynx dataset available at KMSurv package (Klein              

et al, 2012). Most relevant results were briefly explained and displayed throughout this text. 

Methods 

The model's proposition takes into account some assumptions in order to obtain good             

properties and compliance with the existing literature. 

Notations and Censorship Mechanism 

This text considers random right censorship without cure fraction, assuming there is a             

failure time such that . Random variable denotes time  τ   {t P (T ) 0}, τ ∞τ = inf :  > t =   <     T i    

to a given event of interest, subject to right random censorship . For each subject, we           C i      

observe , . Moreover, the cumulative hazard t , Δ )( i  i  (T , C ), Δ  I(T )ti =  min
 i  i  i =  i ≤ C i      

function is denoted by , the hazard by .(t) (t)H =  − log S (t) (t) − (t)h = Ḣ = d
dt log S  

Risk Function Using the Polynomial 

Intuitively, an approximation for  cumulative risk  when using BP is, (  τ ) H k
m n ∞  →   

(t; ; ) H(  τ ) ( )(t/τ )  (1 /τ ) .B m H =  ∑
m

k=0
 k

m k
m k − t m−k  

Deriving the function , we have(·)B  

(t; ; )  (τ ) (t/τ )  (1 /τ )  Ḃ m H =  ∑
m

k=0
H k

m
Γ(m+1)

Γ(k)Γ(m−k−1)
k − t m−k )(1 ) { τ

1 − ( t
τ  2 − t

τ
−1

k
(m−k)}  

                        . = ∑
m

k=1
H(τ ) (τ ){ k

m − H m
k−1 } τ

f (t/τ ; m−k+1) β) g (t)= ∑
m

k=1
γk  m,k  

Now, risk is approximately   and cumulative risk is  .(t |x ) g (t)h i i = ∑
m

k=1
γk  m,k (t |x ) G (t)H i i = ∑

m

k=1
γk  m,k  

According to Osman and Gosh (2012),   and  are assumed in  practicalm = √n (t )τ =  max
i i  

situations. 

Inference 

Unlike the Cox’s model, the proposed approach does not use partial likelihood. ​For Cox              

proportional hazards theoretical background see Klein and Moeschberger (2006). 

(γ, β)  l  = ∑
n

i=1
{Δ [h(t  | x )] H(t | x )}i log i i −  i i = ∑

n

i=1
Δ [h (t , γ)e ] (t , γ)e { i log m i  x βi′ − Hm i  x βi′ }  

where , given by the previous expression.(t, γ) g (t)hm  = ∑
m

k=1
γk  m,k  

 



 

On one hand, maximum likelihood estimation consists in maximizing the expression           

above with respect to . On the other hand, in consonance with Ibrahim et al (2001),    γ, β)(  ′             

bayesian estimators are calculated for each iteration risk curve recurring to Adaptive            

Rejection Metropolis Sampling (ARMS) within Gibbs sampling to find posterior conditional           

distributions. One can't know, but ARMS requires a grid delimiting the aimed density support.              

HI package (Petris & Tardella, 2013) provides an ARMS routine, in addition to that, a               

Jacobian variable transformation to push all variables in [0,1].  

Results and Discussion 

For comparison, Cox model was fitted. Centered but not scaled data were used due to               

avoid overflow in the argument to the exponential function. These actions do lead to              

numerical stability as mentioned at survival package details (Therneau & Grambsh, 2000).            

Table 1 shows coefficient estimates for proportional hazards model using partial likelihood            

(coxph) and Bernstein Polynomials, both bayesian and frequentist approach.  

Table1​ – Estimate comparison between BP estimates and Cox’s model. 

Parameter 

Estimate 

Coxph 

Posterior 
mean 
(BP) 

MLE 
(BP) 

β1  0.02 0.02 0.02 

β2  0.14 0.16 0.17 

β3  0.64 0.65 0.66 

β4  1.71 1.80 1.80 

γ1  - 0.11 0.10 

γ2  - 0.16 -0.24 

γ3  - 0.09 0.00 

γ4  - 0.10 0.08 

γ5  - 0.14 0.27 

γ6  - 0.23 0.00 

γ7  - 0.29 0.75 

γ8  - 0.29 0.00 

γ9  - 0.25 0.00 

γ10  - 0.28 0.00 

In table 1, parametric estimates are close if compared to Cox`s Model, but polynomial              

coefficients differ. Besides the differences between posterior and maximum likelihood          

 



 

estimations for seen on table 1, figure 1 shows that approximate curves  , k , 10 γk  = 1  · · · ,            

using BP are close to Breslow non-parametric approximation curve.  

             

Figure 1 ​– Base cumulative risk and base survival curves. 

 

For a given set of covariates is also possible to compute the survival function for a                

patient, in figure 2 the patient is supposed to have 77 years old, similar to coxph. 

 

Figure 2 ​– Survival curves by groups for a given 77 years old patient. 

 

 

 

 

 



 

Conclusion 

The proposed methodology has three characteristics: (a) the risk rate estimator has            

the solution of a strictly convex optimization problem for a wide range of applications which               

is computationally attractive; (b) The model is shown to encompass the proportional risk             

structure; (c) Asymptotic properties, including consistency, are established under a set of            

light regularity; (d) in conclusion, the figure 1 and 2 shows continuous approximates to              

hazard and survival functions. 
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