KINETOSTATIC OF THE 3R DYAD (OR 2R MODULE)
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Abstract: This paper presents a method to determine the kinetostatic parameters at the
3R dyad. One proposes to determine the forces from joints: Rg, Rp, Rz3. To generalize the
method and to the 2R robots, are introduced and the two moments M, M,. This (2R
module) is the principal from the anthropomorphous rotation robotic structures and
mechatronic structures. Figure 1 shows a schematic diagram of the 3R dyad minimum
kinetostatic (determination of static forces); (loaded with the inertia forces, considered
external forces). For if there are additional external forces, such as technological
resistances will be added as well.
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Fig. 1. The kinetostatic parameters to a 3R dyad
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1. INTRODUCTION

In this paper it presents a method able
to determine the kinetostatic parameters
to a 3R dyad (see the Figure 1) [1-4].

To generalize the method and to the
2R robots, are introduced and the two
moments M, M. This 2R module, is the
principal from the android rotation
robotic structures and mechatronic
structures [1], [3].

The 3R dyad has two elements, noted
with 2 and 3. Their lengths are I, and .

If the 3R dyad is coupling to a 4R
mechanism, we note the forces which
give the entry into dyad, with Ry, and
Ros. In case the structure 2-3 is using to a
robot or to another mechanism, we note
the entrance forces, with Rg and Rp.

One proposes to determine the forces
from joints: Rg, Rp, Ras.

Figure 1 shows a schematic diagram
of the 3R dyad minimum Kinetostatic
(loaded  with  the inertia  forces,
considered external forces).

For if there are additional external
forces, such as technological resistances
will be added as well.

One can consider and the forces of
gravity, if mechanism operates strictly
vertically and working speeds are low [1-
4].

2. DETERMINING THE FORCES
FROM JOINTS

The joints forces represent the interior
loads (internal forces).

One proposes to determine these
(internal) forces.

We start with the internal force Rg,
which is divided in two components in a

cartesian planar system: R}, R}.

If external forces are known in
general  (are  given,  determined,
calculated), internal forces (reactions of
kinematic couplings) results from the
balance of forces and moments of the
dyad [2], [3], [4].

To start [3] we are writing an
equation representing the sum of the
moments from element 2 in relation to
the point C, and another relationship
which represent the sum of all moments
from entire dyad, in relation to the point
D (system 1).

DME =0=Ry-(ye — Vs )-
RY - (X —Xg )+ M, +

FR Ve - e, )-

~FY (% — %6, J+ M} =0

> MED=0= Ry (Yo — Ve )- "
—RY-(xp =X )+ M, +

(yD ) + M, +
—F (%o —Xg, )+ M}
(YD ye3)
- FGIZ '(XD _XG3)= 0
The two equations are rewritten in the
form of the system (2).
(yc - yB)' Ré _(Xc _XB)' Ré/ =-M, -
- FGD; '(YC - yez)"" FGIZ '(Xc - XGZ)_ M;
(yD_yB)'Ré_(XD_XB)'Ré: (2)
=M, — FE (Yo — Yo, )+
+FY (X —%g )-M} - M, —
- F(.: '<YD - YG3)+ F(‘z '(XD - Xea)_ M3i
System (2) can be arranged as a linear
system (3) by two equations with two

unknowns R, =R}; R),=RJ, with the
coefficients, given from system (4).
{all ) Rlxz +a,- Rlyz =a

Ay Rlxz +ay - Rlyz =a,
or (3)
{an ) Ré +a,- Rg =a;

a21'Ré +ay - Ré, =4,

8= Yo~ Yo @ =—(Xc —Xg )
a,=-M, ~F -(ye —yo, )+

+ FGIZ '(Xc —Xg, )_ M, (4)
8= Yo~ Vi 8 =—(Xp —Xg)

a,=—M,; - F(‘z '(YD _YG2)+ F(‘:Z '(XD —Xg, )_

~M} =M, ——F&(yo -y )+

+F o — % )M

Solutions of the system (3) will be
given by system (5).
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a; &
A= 2:au"é‘zz_aiz‘am
Ay Ay
a
Ay = ? =8y a —a;, q,
a, ay, (5)
a;
Ay: ' =08, —a, -
a; 4,

R; ERlxzzix: A d — 3,8 :
A Q8 — 8, ay
R/ =R),="Y= Q-8 8y, 8
A 8y — 8, a8y
Further determine other two internal
forces, Ry, si Rys, or (RS si RY).

Next we write the sum of all forces
on the dyad (2,3) designed separately,
first on the x axis and then on the y axis,
(see the system 6).

YEF=0=
=Ry +FI+FY+R;=0=

X _ X _ X ix ix
= Rp =Ry =-Rj;—Fg —Fg

Z F®9=0= ©
y
=Ry +FJ+FY+R;,=0=
= Ry =R =-R) - FGIZ - FGIZ
DR =0=R+ R -
- szs =0= szs = RlXZ + FGI:
D RP =0=R,+FY -
- Rzys =0= Rzys = RlyZ + FGIZ
(7)

D FEY=0=RL+F+
+Ry =0=R);=-F{-Ry
Y FP=0=R,+F+
+Ry=0=>R),=-FY -R}

For the last two scalar components of
the internal force from the joint C, one
writes a new balance of forces on element
2 (for example), designed separately on

axes x and y (system 7).
We obtained directly the internal

forces R,; and R),. Their opposites, R;,

or

and R),, they will be equal but opposite

directed their, or in other words will have
the same value but opposite sign [3].

For that all Kinetostatic calculations
of the 3R dyad to be possible, must be
determined in advance, the forces and
moments of inertia, separately for each
element of the dyad. These are called
,the group of the inertial forces”, and are
expressed with the relations system (8).
Fot=—m, %, [F&=-my %,

Fcz =-m,- yez ch =-m,- ng

M;:_Jez'gz M?i,:_‘]ea'gs

Xs, = Xg S, COS@,
Ye, =Yg +5,-sing,
Xs, =Xg =S, SiNg, ¢,
j . . .
Yo, =Yg +5,°COSQ, -,
{X'GZ =Xy —S,-C0SQ, W) —5,-SiNg, &,
=

. . . )
Yo, =Yg =S, -SINQ, @, +5,-COSQ, - &,

Xs, = Xp + S5 - COS g
) =
Yo, = Yp TS5 -SINQy
X, = %p =Sy -SiN @y - 5
Yo, = Yp + S5 - COS @3 - @5 ( )
{X’Ga =Xy — S, - COS @, - . — S, -SiN @, - &,
=

. . . 2
Yo, = ¥p =Sy -SIN@y - @ + S5 - COS @y - &5

3. DIAGRAMS OF THE
FORCES FROM JOINTS

The joints forces can be determined
and represented by the two diagrams
below (Figure 2, and 3).

Below you can see the six forces
(internal forces) of joints from dyad 3R,
depending on the angle of the crank Fl,
when the dyad is linked together with a
crank, forming a mechanism 4R [1-4].

Variation is represented on an entire
cycle kinematic, for an angular velocity
of crank, 200 or 300 [s™].
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Fig. 2. The six internal forces of
joints; =200 [s™]

Fig. 3. The six internal forces of
joints; =300 [s™]

4. CONCLUSIONS

This method presented in the article,
is the most elegant and direct method to
determine the internal forces at a 3R dyad
[3] [1-11].

The method has a strong teaching
character.

The relationships presented in this
paper allow and the synthesis of robots
(the mechanical systems, serial, in
movement) [3].

5. IMPORTANCE AND USES

I-The first use of the reaction forces
from couplings, is sizing of the kinematic
couplings.

I1-At the mechanisms with a degree
of mobility, with the forces from driving

coupling (R3,RY), it determines the
required motor torque (M,). We

illustrate by the mechanism articulated
quadrilateral (Fig. 4 and relationships 9).

Fig. 4. The forces at a mechanism articulated
quadrilateral
M, - szl'(yB _yA)+ Rzyl'(XB _XA):O:>
:Mm:szl'(yB_yA)_ R2y1'(XB_XA)3 (9)
=>M, :_Rixz '(YB - yA)+ R1y2 '(XB _XA):
=M, :_Ré '(YB - yA)+ Rél '(XB _XA)

Usually the torques M; and M, are
null. But they can be and an external
torque.

I11-At the mechanisms with two
degree of mobility, with the forces from
driving coupling (see the Fig. 5), it
determines the required motor torques:
M,=M_,,M,=M_,.

m2?

Fig. 5. The forces at a mechanism with two
degree of mobility

This  scheme is used in
anthropomorphic robots. Coupling B is
denoted by O,. Coupling C is denoted by
Os. Coupling D become an end effector
point M. Basic structure 3R of
anthropomorphic robot (Fig. 6) can be
decomposed into 2R planar structure
(Fig. 5) which also possesses an
additional rotating around a vertical axis
(000y).
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Fig. 6. The basic structure 3R

It is more convenient to study the
structure plan O,03M system (elements 2
and 3). But since this system (plan, 2R)
using balanced, it's good to study in its
balanced form (Fig. 7).

Fig. 7. The basic, balanced, structure 2R

Masses and lengths of the system are
calculated using the equation 10.

TMO-0 =

3

=>m -d;+my-s;=m, - p,
m,-d;+m,-s,

= py =
? mIII

m, =m; +m,+m,,

TMED=0 =

=My -dy+my s, =my - p,

(10)

m,-d,+m,-s,
mII

=0, =

My =M, +m, +m,

Forces from the driveline balanced
plan can be seen in the Fig. 8.

X '
: :‘_'. (.'j)_(-
Gy, =my 8= |Fi

Fig. 8. The forces of the basic (balanced)
structure 2R
Now, it still writing inertial forces
(relations system 11) of the point Os.

x o
Fo, =—My - X, =

2
=-m, - (-)d, - CoS@,, - @5, =

2
=My, -d, - COS @y, - s

11
Ficy)3 =—My - y03 = (11)

=-m, - (-)d, -sing,, - a’zzo =

: 2
=m, -d, -sing,, -,

M

io, = Jo, " &3
Now we are writing and the inertial
forces of the points S, (12) and I, (13).

. 2
{Figz =—M, - X5, =M, S, - COS Py - Dy (12)

y _ .o _ - 2
Fs, =—M, - Y5, =M, S, -SIN@,, - @,

{Filxz =-m, - X, =-M, -p, '005(020'0)220 (13)
Fily2 =-m, -y, =-M, -p, -sin g, 'a)zzo

Now we can write the equilibrium
equations on the element 2 projected on
the x (system 14) and y (system 15).
D Fay=0=m, -d, - COS @,y - @ +M, -, - COS @y - 3 —
-m, - P, -cosgozo-a)220+Ré2 =0=>
= (M, -d,+m,-s,—m, - p,)-COS @,y @ +R5=0
but my-d,+m,-s,—m, -p, =0 because balanced =
=R;, =R5=0

(14)

> RS =0=>my-d,-sing, - wly+m,-s, SN g, -l -
—m, - p,-SiN@y, - @2 —Mm,-g+R),=0=
= (My-d,+m,-s,—m, - p,)-SiN @, - @5 —m,.-g+R%, =0
but my-d,+m,-s,-m, - p, =0 because balanced =

=Ry =R, =m, g=G,

(15)
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It can be seen that the torque loads
are minimal precisely because balancing.
Effect given inertial forces (torques
produced by these forces) cancel (balance
due).

Torques produced by the forces of
gravity is canceled and they all balance
due.

Balanced final weight also makes the
powertrain only one effect, a vertical load
(causes a vertical reactor) in fixed
coupling.

At a total balanced, even the
horizontal load disappears.

It will still write an amount of
moments to the fixed point O,, on the
element 2 (system 16).

T
ZM(;ZZ)zoijZ_F|ég'd2'cos((p20_§j_
-FJ -d,-sin “ZI-FX s, -singy,—FL -s, - —COS @y, +
io, U2 P20 2 is, " S2 Pao — Fis, * S, Dao
. T y . T
+Fy, - p, - €08 (on_E +Fy - p,-sin (/’20_5 +M;, =0=
=M, —Myd} w3, C0S @y, SiN @, + My, - dF w3 SIN @, COS Py —

2 2 - 2 2
—My - Sy - @y COS Py SN Py + M, - S; - W) - SIN Py - COS Py —

2 2 - 2 2
— My - Py + @30 COS Py SN Py + My - 05 + Wyg - SIN Prq - COS Py —

-Jo,6,=0=>M, =15 -5,=0=>M_ =g -5
(16)
Mass moment of inertia (or
mechanical) of the element 2, is
calculated with relation 17.
Jo, =Jo, + My -dy =m,-s; +m, - p; +m, -d;
(17)
One can determine now the torque
required (Mm2), which must be generated
by the actuator 2 (mounted in coupling
0,); see the relation (18).
Mmz :‘]gz ) :(mz '522 +m, 'p22 + My 'dzz)‘(pzo
(18)
We now sum of the moments of all
forces on item 3 in relation to swivel Os
(relationship 19).
dMP=0=
My, + Mg, =0=M, —Jo -&=0= (19)
=>M,, =Jo, &=
:>Mm3 :(ms'd32+m3'se%+mm 'pe%)'(bso
One determines now and the vertical
component, of the reaction, from the
mobile (internal) coupling Os; (see the
relations of the system 20).

Y Fy=0=-m,-g+R);,=0=
=>RL=m,-g= (20)
= Rsyz :_Rzya =—-Mm;-g

Horizontal component (of the
reaction from the kinematic coupling Os)
Is zero (21).
szs = _Rsyz =0 (21)

6. DYNAMICS OF SYSTEM 2R
(LAGRANGE DIFFERENTIAL
EQUATION OF THE SECOND
KIND)

It writes now, just the most important

relations of the system 2R, in the form
22.

Mmz—Jo2 &,

M, =Jo &
M =(m SZ4m, - pZ4+m -dz)-“
m, 2792 P2 3 Uy ) Pa
2 2 2 .
Mmsz(ms'd3+m3'53+mm',03)'%0

(22)
These relationships necessary to
study the dynamics of the kinematic
chain level (22), can be obtained directly
by another method, which uses Lagrange
differential equation of the second Kind,
and the Kinetic energy saving mechanism.
This method is more direct than
cinetostatic ~ study, but has the
disadvantage of not determining the
loadings (reactions, internal forces) from
kinematics chain, necessary to calculate
the strength of the material in
applications in which certain dimensions
are selected (thickness or diameter) of the
kinematic elements 2 and 3, and
connecting joints.
One first determines the speeds, in the
gravity centers (relations from system 23,
and Fig. 9).
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Xo. =0;

2

Yo, = 0 @0 =y =,

Xo, ==, SiN @y @;; (23)

Yo, = d, - COS @, - y;

P30 = Wyy = Wy
. ; _
Iy & 4y - — il
“\((\j%’ ¢
‘/7:.\'.-"':'.' -z ‘\'_' X
"-"," N

'_\: .
M ﬂ-_
@ 2

{
W
Fig. 9. Dynamics of the driveline balanced
plan
For item 3, mass moment of inertia or
mechanical (inertial mass) is determined
by the relationship 24.
‘]03 =m 'd32 + My 'Se? +my, ',032 (24)
For item 2, will cause mass moment
of inertia (mechanical) in fixed joint O,
(25).
‘]02 =m, '522 +m, 'pzz (25)
The kinetic energy of mechanism is
determined with the relations of the

G, =m,.-g

system (26).
E :%"JOZ -0)224-%-\]03 ! +

1 o 1 .2
+§-m3.'X03 +§'m3|'y03 =

1 1
:E.Joz '(022+E'J03'(032+

1 1
+E'm3"d22'a)2225"]03'a)32+ (26)

+%a)22 -(Jo2 +m,, -dzz):

2
.0)2

3 2

1 1 .
:E.JO .w§+E.JO

* 2
Jo, =Jdo, +My-d,

Kinetic energy equation for the
balanced driveline is expressed with final
relationship (27).

1 1 ..
E=§-Joa~a)§+§~.]oz-a)22 (27)
It uses the Lagrange differential

equations of second kind (28).

dfoE _E_Q
dtlog, ) oq,
with k=2, 3
(28)
d(e6E) @éE
d—[a]a‘?
d(o6E) oE
o Rl b {0}
dt\ oq, ) 0q,

How Kinetic energy in this case does
not depend directly from the kinematic
parameters of positions g, and Qs,
represented by the position angles @2
and 3o, it can be used the simplified
form of the Lagrange equations (29).

d(aE =Q, with k=2, 3

dt | o,

29
G(E) o L d(E)_y @)
dt\ od, dt\ dw, ?

9(E) o L[
dt\ od, dt\ o, ’

By replacing the partial derivatives
and making the derivatives in function of
time, the system (29) takes the form (30).

oE . d( oE . .
—=Jy 0, =>—| — [=J5 5,20, 6, =M
6(02 o, W dt [ 6&)2 J 0, "©2 0, ¢2 m

2

oE d( oE
—=J, o, =>—| — |=d5 55> J5 5, =M
ow, 0 "% =t [ o, J 0, "¢3 0, €3 my

J;Z g, =M
Jo, &=M

my
My

v 2 2 2
Jo, =My -8y +my - p; + My -d;

_ 2 2 2
\103 =mg-d; +my-s;+m,, - p;

2 2 2
:(m2‘52+m|| P2 +m3"d2)’52

M.,
2 2 2
Mm3 :(ms'd3 +My-S; +m,, ‘/33)'83

(30)
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