Redução das emissões de CO2 do processo industrial de separação BTX via recompressão de vapor

Autores

DOI:

https://doi.org/10.22409/engevista.v22i1.65793

Palavras-chave:

BTX, intensificação de processos, recompressão de vapor, UniSim

Resumo

A crescente busca por tecnologias que fomentem processos industriais mais sustentáveis e fortaleçam a competitividade econômica é evidente. Assim, a intensificação de processos tem ganhado proeminência. A estratégia de recompressão de vapor tem revelado seu potencial em impulsionar novas perspectivas operacionais para instalações existentes. O presente estudo tem como objetivo analisar três configurações distintas de intensificação por recompressão de vapor, com o propósito de reduzir a demanda energética e as emissões de CO2 do processo industrial de separação da mistura Benzeno-Tolueno-o-Xileno. Os processos foram modelados utilizando o software UniSim. Os resultados demonstraram que tal estratégia proporcionou uma redução significativa, de até 81 % e 92 %, respectivamente, nas referidas métricas, alinhando-se aos objetivos de desenvolvimento sustentável da ONU.

Downloads

Não há dados estatísticos.

Biografia do Autor

Fernanda Ribeiro Figueiredo, Universidade Federal Fluminense

Vinculada à Universidade Federal Fluminense - UFF, Departamento de Engenharia Química e de
Petróleo (TEQ), Niterói, Rio de Janeiro, Brasil.

Diego Martinez Prata, Universidade Federal Fluminense

Vinculado à Universidade Federal Fluminense - UFF, Departamento de Engenharia Química e de
Petróleo (TEQ), Niterói, Rio de Janeiro, Brasil.

Referências

CAXIANO, I. G., JUNQUEIRA, P. G., MANGILI, P. V., PRATA, D. M. Eco-efficiency analysis and intensification of the acetic acid purification process. Chemical Engineering and Processing: Process Intensification, v. 147, 107784, 2020.

COUPER, J. R., PENNY, W. R., FAIR, J. R., WALAS, S. M. Chemical Process Equipment: Selection and Design, 3.ed., Butterworth-Heinemann, 2012.

DE MIRANDA, T. C. R. D. de, FIGUEIREDO, F. R., SOUZA, T. A. de, AHÓN, V. R. R., PRATA, D. M. Eco-efficiency analysis and intensification of cryogenic extractive distillation process for separating CO2–C2H6 azeotrope through vapor recompression strategy. Chemical Engineering and Processing - Process Intensification, v. 196, 109636, 2024.

FENG, Z., SHEN, W., RANGAIAH, G. P., DONG, L. Design and control of vapor recompression assisted extractive distillation for separating n-hexane and ethyl acetate. Separation and Purification Technology, v. 240, 116655, 2020.

FIGUEIREDO, F. R.; PAIVA, A. P. R.; SANTOS, R. O. dos; MAIA, M. P.; PRATA, D. M. Eco-efficiency analysis and intensification of the monochlorobenzene separation process through double-effect strategy. Chemical Engineering and Processing - Process Intensification, v. 197, 109709, 2024.

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Chemical Agents and Related Occupations. Lyon (FR): International Agency for Research on Cancer; 2012. (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 100F.) Benzene. Disponível em: <https://www.ncbi.nlm.nih.gov/books/NBK304399/>. Acesso em:21 abr. 2024.

IPCC - INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. Climate Change 2014: Synthesis Report. IPCC, Geneva, Switzerland, p. 151, 2014.

JUNQUEIRA, P. G., MANGILI, P. V., SANTOS, R. O., SANTOS, L. S., PRATA, D. M. Economic and environmental analysis of the cumene production process using computational simulation. Chemical Engineering and Processing-Process Intensification, v. 130, p. 309-325, 2018.

JUNQUEIRA, P.G., CAXIANO, I.H., MANGILI, P.V., PRATA, D.M. Environ-economic analysis of conceptual intensification alternatives applied to the ethylbenzene production. Computers and Chemical Engineering, v. 136, 106783, 2020.

KAZEMI, A., HOSSEINI, M., MEHRABANI-ZEINABAD, A., FAIZI, V. Evaluation of different vapor recompression distillation configurations based on energy requirements and associated costs. Applied Thermal Engineering, v. 94, p. 305–313, 2016.

KAZEMI, A., MEHRABANI-ZEINABAD, A., BENESHTI, M. Recently developed heat pump assisted distillation configurations: A comparative study. Applied Energy, v. 211, p. 1261–1281, 2018.

KIM, Y. Energy saving of benzene separation process for environmentally friendly gasoline using an extended DWC (divided wall column). Energy, v. 100, p. 58-65, 2016.

KONG, Z.Y. SÁNCHEZ-RAMÍREZ, E., YANG, A., SHEN, W., SEGÓVIA-HERNÁNDEZ, J.G. Process intensification from conventional to advanced distillations: Past, present, and future. Chemical Engineering Research and Design, v. 188, p. 378–392, 2022.

LI, Q., SOMOZA-TORNOS, A., GRIEVINK, J., KISS, A. A. Challenges and opportunities for process intensification in Europe from process systems engineering perspectives. Frontiers in Energy Research, v. 12, 1340635, 2024.

LING, H., LUYBEN, W. L. New control structure for divided-wall columns. Industrial Engineering and Chemistry Research, v.48, p. 6034-6049, 2009.

LONG, N., LEE, M., Review of retrofitting distillation columns using thermally coupled distillation sequences and dividing wall columns to improve energy efficiency. Journal of Chemical Engineering of Japan, v. 47, p. 87-108, 2014.

MANGILI, P. V., SOUZA, Y. P. D. M., de MENEZES, D. Q.F., SANTOS, L.S., PRATA, D. M. Eco-efficiency evaluation of acetone-methanol separation processes using computational simulation. Chemical Engineering and Processing: Process Intensification, v. 123, p. 100–110, 2018.

MCTIC – MINISTÉRIO DA CIÊNCIA E TECNOLOGIA, INOVAÇÃOE COMUNICAÇÕES. Fator médio inventários corporativos. 2023. Disponível em: <https://www.gov.br/mcti/pt-br/acompanhe-o-mcti/cgcl/paginas/fator-medio-inventarios-corporativos >. Acesso em: 21 de abr. 2024.

NASCIMENTO, L. G., MONTEIRO, L. P. C., SIMÕES, R. C. C., PRATA, D. M. Eco-efficiency analysis and intensification of the biodiesel production process through vapor recompression strategy. Energy, v. 275, 112921, 2023.

ONU - Organização Das Nações Unidas. 17 Sustainable Development Goals (SDGs), 2015. Disponível em: <https://sdgs.un.org/goals>. Acesso em: 21 abr. 2024.

PANJESHANI, M. H., ATAEI, A., GHARAIE, M., PARAND, R. Optimum design of cooling water systems for energy and water conservation. Chemical Engineering Research and Design, v. 87, p.200-209, 2009.

PARK, H., KIM, J. K., YI, A. C. Optimization of site utility systems for renewable energy integration. Energy, v. 269, 126799, 2023.

PLESU, V., RUIZ, A., BONET, J., LLORENS, J. Simple Equation for Suitability of Heat Pump use in Distillation. Computer Aided Chemical Engineering, v. 33, p. 1327-1332, 2014.

SAHRAEI, M. H., FARHADI, F., BOOZARJOMEHRY, R. B. Analysis and interaction of exergy, environmental and economic in multi-objective optimization of BTX process based on evolutionary algorithm. Energy, v. 59, p. 147-156, 2013.

SEIDER, W. D., LEWIN, D. R., SEADER, J. D., WIDAGDO, S., GANI, R., MING Ng, K. Product and Process Design Principles: Synthesis, Analysis and Evaluation. 4ª ed., John Wiley & Sons, 2016.

TSAO, C., SONG, H., BARTHA, R. Metabolism of benzene, toluene, and xylene hydrocarbons in soil. Applied and environmental microbiology, v. 64, 4924–4929, 1998.

TURTON, R., BAILIE, R., WHITING, W. B., SHAEIWITZ, J. A., BHATTACHARYYA, D. Analysis, Synthesis, and Design of Chemical Processes. 5ª ed., Prentice Hall, 2018.

YATEH, M., LI, F., TANG, Y., LI, C., XU, B. Energy consumption and carbon emissions management in drinking water treatment plants: A systematic review. Journal of Cleaner Production, v. 437, 140688, 2024.

ZHAI, J., CHEN, X., SUN, X., XIE, H. Economically and thermodynamically efficient pressure-swing distillation with heat integration and heat pump techniques. Applied Thermal Engineering, v. 218, 119389, 2023.

Downloads

Publicado

2024-12-23

Edição

Seção

Artigos