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ACCELERATED LIFE TESTING WITH AN UNDERLYING 
THREE-PARAMETER WEIBULL MODEL 
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Abstract: The main objective of life testing is to obtain information concerning failure. 
This information should then be used in order to quantify reliability, improve product 
reliability, and to determine whether safety and reliability goals are being met. The amount 
of time available for testing directly at use conditions, that is, with practical test times and 
realistic (relatively) small test sample sizes, could be considerably less than the 
component’s expected lifetime. To overcome such a problem, there is the life-testing 
alternative aimed at forcing components to fail by testing them at much higher than the 
intended application conditions. By doing this, we will get failure data that can be fitted to 
life distribution models. To go from the failure rate obtained at high stress to what a 
product or service is likely to experience at much lower stress, under use conditions, we 
will need additional modeling. These models are known as acceleration models. The 
accelerated life testing concept is such that a component, operating under predetermined 
(correct) levels of increased stress, will have exactly the same failure mechanism as 
observed when used at normal stress levels. For example, if the time of testing is measured 
in cycles, then the time squeezing may only require increasing the number of cycles per 
unit of time. In this study, we will develop an accelerated life-testing model in which the 
underlying sampling distribution is the three-parameter Weibull model. We will be 
assuming a linear acceleration condition. An example will illustrate the application of the 
proposed accelerated life-testing model. 
 
Keywords: Accelerated Life Testing; Three-Parameter Weibull Model; Linear 
Acceleration; Maximum Likelihood Mechanism. 
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1. INTRODUCTION 
The accelerated life testing concept is 
such that a component, operating under 
predetermined (correct) levels of 
increased stress, will have exactly the 
same failure mechanism as observed 
when used at normal stress levels. 
Failures will happen more quickly, no 
new failure modes are introduced. So, if 
the life distribution for units operating at 
a high laboratory stress is known, and if 
the appropriate time scale transformation 
to lower stress conditions is known, then 
it will be possible to mathematically 
derive the life distribution at lower stress. 
The simplest model assumes a constant 
(linear) acceleration effect over time. 
Therefore, if we define the linear 
acceleration factor by AF, we will have: 
 

nt  = AF × at                  (1) 
 
Here, tn is the time to failure under 
normal (standard) stress, and ta is the 
time to failure at high stress level. 
The cumulative distribution function at 
normal testing condition Fn(tn) for a 
certain testing time t = tn will be given 
by: 
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The density function at normal testing 
condition fn(t) for a certain testing time t 
will be given by: 
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The hazard rate at normal testing 
condition hn(t) for a certain testing time t 
will be given by: 
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2. THREE-PARAMETER WEIBULL 
DISTRIBUTION ACCELERATION 
Sequential life testing approach with a 
two-parameter Weibull underlying 
sampling distribution was analyzed 
before by De Souza [1], [2], [3], [4], 
Sequential life testing approach with a 
three-parameter Weibull underlying 
sampling model was also addressed by 
De Souza [5], [6]. 
An accelerated life testing approach in 
which the underlying sampling 
distribution is the two-parameter Weibull 
model was addressed before by De Souza 
[7], [8]. The two-parameter Weibull 
distribution was addressed before by Erto 
[9], Mann [10], Papadopoulos and 
Tsokos [11], Soland [12] and Tate [13]. 
In this work, we will develop an 
accelerated life testing approach in which 
the underlying sampling distribution is 
the three-parameter Weibull model. We 
will be assuming that the location 
parameter or minimum life is different 
from zero. 
So, let us define the following parameters 
of the sampling Weibull distribution:   

nβ  = shape parameter under normal 
testing conditions; aβ = shape parameter 
under accelerated testing conditions; nθ  
= scale parameter under normal testing 
conditions;  aθ = scale parameter under 
accelerated testing conditions;  nϕ  = 
minimum life under normal testing 
conditions; aϕ  = minimum life under 
accelerated testing conditions. Then the 
cumulative distribution function at 
accelerated condition Fa(t) of the three-
parameter Weibull distribution will be 
given by: 
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In general, the scale parameter and the 
minimum life can be estimated at two 
different stress levels (temperature, 
cycles, miles, etc.), and their ratios will 
provide the desired value for the 
acceleration factor AFθ and AFϕ. So, we 
will have: 
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a
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Or also: 
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a
n

ϕ
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                   (7) 

 
Also, AFθ = AFϕ = AF. 
 
Using now equation (2), we obtain the 
cumulative distribution function at 
normal testing condition Fn(tn) for a 
certain testing time t = tn, we will have  
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From equation (7), we have ϕa = ϕn /AF. 
Then, we obtain 
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Since θa AF= θn and βa = βn = β, equation 
(8) becomes: 
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Equation (9) tells us that, under a linear 
acceleration assumption, if the life 
distribution at one stress level is 
represented by a three-parameter Weibull 
model, the life distribution at any other 
stress level is also represented by a three-
parameter Weibull model. The shape 
parameter remains the same while the 
accelerated scale parameter and the 
accelerated minimum life parameter are 
multiplied by the acceleration factor. The 
equal shape parameter is a necessary 
mathematical consequence to the other 
two assumptions; assuming a linear 
acceleration model and a three-parameter 
Weibull sampling distribution. If 
different stress levels yield data with very 
different shape parameters, then either 
the three-parameter Weibull sampling 
distribution is the wrong model for the 
data or we do not have a linear 
acceleration condition. 
The hazard rate of a three-parameter 
Weibull sampling distribution varies 
under acceleration. For a stress failure 
rate the hazard function ha(t) will be 
given by: 
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Again, from equation (7) we have that   
ϕa = ϕn /AF. Then, we obtain 
 

( )tha  = 
aθ
β  

1

a

n
AF

t
−β

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

θ

ϕ
−

      (10) 

 
As we remember, θn = θa AF. Then, when 
we multiply equation (10), the hazard rate 
at accelerated testing condition ha(t), by 
the factor 1/(AF)β, we will have as a 
result the hazard rate at normal testing 
condition hn(t). Then, we will have: 
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There was a linear change in the hazard 
rate at acceleration testing condition ha(t). 
When ha(t) is multiplied by the factor 
1/(AF)β, we will have as a result the 
hazard rate at normal testing condition 
hn(t). Only when the sampling population 
is exponential (the shape parameter β is 
equal to 1), will the multiplication factor 
be equal to 1/AF. 
 
3. DETERMINING AN INITIAL 
ESTIMATE TO THE MINIMUM LIFE 
PARAMETER ϕ 
The pdf of t1, the first failure time, will be 
given by 
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For the three-parameter Weibull 
sampling distribution, we will have: 
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The expected value of t1 is given by 
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As t → ∞; U → ∞. As t → ϕ; U → 0. 
Then: 
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In solving the integral  
 

∫
∞

βθ

0

1Un Une− ud , let Z = nU . Then: 

ud  = 
n
zd ;    U =

n
Z  

 
As U → ∞; Z → ∞;  As U → 0;   Z → 0.  
Then: 
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The expected value of t1 is given by: 
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which indicates that ϕ can be estimated at  
normal condition by: 
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ϕ can also be estimated at accelerated 
condition by: 
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4. EXAMPLE 
We are trying to verify if, for a three-
parameter Weibull sampling distribution, 
a component, operating under 
predetermined (correct) levels of 
increased stress, will have exactly the 
same failure mechanism as observed 
when used at normal stress levels. In 
order to do so, a certain type of 
metallurgical part was subjected to an 
accelerated life test, where 15 of such 
parts were cycled with the testing being 
truncated at the moment of occurrence of 
the ninth failure. Table (1) below shows 
the failure time data (hours) obtained 
from the life testing under accelerated 
conditions: 
 

Table 1. Failure times (hours) of 
metallurgical parts tested under 

accelerated conditions 
26.8 18.0 57.7 

62.2 122.1 29.7 
94.9 60.7 90.3 

 
The underlying sampling distribution is 
the three-parameter Weibull model. 
Using the maximum likelihood estimator 
approach for the shape parameter β and 
for the scale parameter θ of the Weibull 
model for censored Type II data (failure 
censored), we obtain the following values 
for these two parameters under 
accelerated conditions of testing. 
 
βa = βn = β = 1.444; θa = 113.1543 hours 
 
Now using equation (13) we obtain the 
estimator value for the minimum life ϕ 
under accelerated conditions of testing: 
ϕa = 2.26 hours 
 
The Appendix (1) shows the development 
of the maximum likelihood estimator for 
censored Type II data (failure censored). 
A second sample is obtained at a normal 
stress level. Once again, 15 metallurgical 
parts were cycled with the testing being 
truncated at the moment of occurrence of 
the ninth failure. 
 

Table 2. Failure times (hours) of 
metallurgical parts tested under normal 

conditions 
415.0 303.3 177.6 
232.4 155.0 286.3 
85.4 180.3 280.0 

 
Again using the maximum likelihood 
estimator approach presented in 
Appendix 1, we obtain the following 
values for the shape parameter β and for 
the scale parameter θ of the three-
parameter Weibull sampling distribution 
under normal conditions of testing: 
 
βn = βa= β = 1.4414; θn = 538.3755 hours 
 
Using equation (12) we obtain the 
estimator value for the minimum life ϕ 
under normal conditions of testing: 
 
ϕn = 10.76 hours 
 
Using equation (6), we will have: 
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Using equation (7), we will have: 
 

AFϕ = 
a
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 = 
26.2
76.10  = 4.7610 ≈ 4.76 

 
Then, as we expected, AFθ = AFϕ = AF = 
4.76, and βn = βa = β ≈ 1.44 
 
As we can observe in this example, under 
a linear acceleration assumption, the 
metallurgical part, operating under 
predetermined (correct) levels of 
increased stress, has exactly the same 
failure mechanism as observed when 
used at normal stress levels. That is, since 
the life distribution at one stress level is 
represented by the three-parameter 
Weibull model, the life distribution at any 
other stress level is also represented by a 
three-parameter Weibull model. As we 
can see in this example, the shape 
parameter value remains the same while 
the scale parameter and the minimum life 
are multiplied by the acceleration factor. 
As we remember, the equal shape 
parameter is a necessary mathematical 
consequence to the other two 
assumptions; assuming a linear 
acceleration model and a three-parameter 
Weibull sampling distribution. 
 
5. CONCLUSIONS 
As we are aware, the main objective of 
accelerated life testing models is to force 
components to fail by testing then at 
much higher than intended application 
conditions. The price we have to pay to 
go from failure rate obtained at high 
stress to what a product or service is 
likely to experience at much less stress, 
under use (normal) conditions, is the need 
for additional modeling. In this study, we 
developed an accelerated life-testing 
model in which the underlying sampling 
distribution is the three-parameter 
Weibull model. The minimum life is 
considered different from zero. We 
assumed a linear acceleration condition. 
As we can verify in the presented 

example, the shape parameter value 
remained the same while the scale 
parameter and the minimum life 
parameter are multiplied by the 
acceleration factor. As we would expect, 
the acceleration factor for the scale 
parameter θ is equal to the accelerated 
factor for the minimum life ϕ. The equal 
shape parameter is a necessary 
mathematical consequence to the other 
two assumptions; assuming a linear 
acceleration model and a three-parameter 
Weibull sampling distribution. 
 
6. REFERENCES 
[1] De Souza, Daniel I., 1999, Sequential 
Life Testing with an Underlying Weibull 
Sampling Distribution. In Safety and 
Reliability, Schuëller & Kafka eds., 
Proceedings of the ESREL ’99 
International Conference on Safety and 
Reliability, Garching, Germany, 13-17 
1999, 2:869-874, Rotterdam, Balkema.  
[2] De Souza, Daniel I., 2000, Further 
Thoughts on a Sequential Life Testing 
Approach Using a Weibull Model, 
Foresight and Precaution, ESREL 2000 
Congress, Cottam, Harvey, Pape & Tait 
(eds), Edinburgh; Scotland; 14–17 May 
2000; 2: 1641 – 1647, Rotterdam,: 
Balkema. 
[3] De Souza, Daniel I., 2001, Sequential 
Life Testing with a Truncation 
Mechanism for an Underlying Weibull 
Model, Towards a Safer World, ESREL 
2001 Conference, Zio, Demichela & 
Piccinini (eds), Torino, Italy, 16 – 20 
September 2001; 3: 1539 – 1546, 
Politecnico Di Torino. 
[4] De Souza, Daniel I., 2002, The 
Bayesian Approach to Sequential Testing 
with an Underlying Weibull Model, 
European Conference on System 
Dependability and Safety, ESREL 2002 
Conference, Lyon, France, 18 – 21 March 
2002; 2: 617 – 621, λµ 13 (eds). 
[5] De Souza, Daniel I. 2003. Sequential 
Life Testing with a Truncation 
Mechanism  for an Underlying Three-
Parameter Weibull Model, Icheap-6, 
Chemical Engineering Transactions, Vol. 
3 p. 557-562, Sauro Pierucci (ed), Pisa, 
Italy. 



ENGEVISTA, v. 7, n. 1, p. 55-62, abril 2005  61

[6] De Souza, Daniel I. 2004a. 
Application of a Sequential Life Testing 
with a Truncation Mechanism for an 
Underlying Three-Parameter Weibull 
Model. ESREL 2004 – PSAM 7 
Conference, Spitzer, Schmoker and Dang 
(eds.), Berlin, Germany, 14 – 18 June 
2004, Vol. 3; pp. 1674-1680, Springer-
Verlag publishers. 
[7] De Souza, Daniel I. (1999) 
Accelerated Life Testing Models. In: 
ORSNZ99 Conference,1999, Hamilton. 
Proceedings of the ORSNZ99 
Conference. Hamilton: University of 
Waikato, NZ, 1999. v.1, p. 245-254. 
[8] De Souza, Daniel I. (1999). Physical 
Acceleration Life Models. In: XIII 
Congreso Chileno de Ingenieria Electrica, 
1999, Santiago. Anais del XIII Congreso 
Chileno de Ingenieria Electrica. 
Santiago: Universidad de Santiago de 
Chile, 1999. v.1, p. 09-14. 
[9] Erto, P. (1982). New Practical Bayes 
Estimators for the 2-Parameter Weibull 
Distribution. IEEE Transactions on 
Reliability, Vol. R-31, No 2, June, pp. 
194-197. 
[10] Mann, N.R. (1968). Point and 
Interval Estimation Procedure Procedures 
for the Two-Parameter Weibull and 
Extreme-Value Distributions, 
Technometrics, Vol. 10, No 2, May, pp. 
231-256. 
[11] Papadopoulos, A.S. and Tsokos, 
C.P. (1975), Bayesian Confidence 
Bounds for the Weibull Failure Model. 
IEEE Transactions on Reliability, Vol. R-
24, No 1, April, pp.21-26. 
[12] Soland, R.M. (1969). Bayesian 
Analysis of the Weibull Process with 
Unknown Scale and Shape Parameters. 
IEEE Transactions on Reliability, Vol. R-
18, No 4, November, pp. 181-184. 
[13] Tate, R.F. (1959). Unbiased 
Estimation Functions of Location and 
Scale parameters. Ann. Math. Statistics, 
30, pp. 341-366. 
 
APPENDIX 1. MAXIMUM 
LIKELIHOOD ESTIMATION FOR 
THE WEIBULL MODEL FOR 
CENSORED TYPE II DATA 
(FAILURE CENSORED) 

The maximum likelihood estimator for 
the shape and scale parameters of a 
Weibull sampling distribution for 
censored Type II data (failure censored) 
will be given by: 
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The log likelihood function will be given 
by: 
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To find the value of θ and β that 
maximizes the log likelihood function, 
we take the θ and β derivatives and make 
them equal to zero. Then, we will have: 
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From equation (A) we obtain: 
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Notice that, when β = 1, equation (C) 
reduces to the maximum likelihood 
estimator for the exponential distribution. 
Using equation (C) for θ in equation (B) 
and applying some algebra, equation (B) 
reduces to: 
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Equation (D) must be solved iteratively. 


