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Abstract 
This paper presents a simulation study of the use of an artificial neural network (ANN) 
model for control and optimization of a Fluidized-Bed Catalytic Cracking reactor-
regenerator system (FCC). This case study, whose phenomenological model was validated 
with industrial data, is a multivariable and nonlinear process with strong interactions 
among the operational variables. In order to obtain a dynamic model of the FCC system, a 
feed forward ANN model was identified. Genetic Algorithm (GA), and Particle Swarm 
Optimization (PSO) evolutionary methods were used to set optimal operating conditions 
for the FCC, and both algorithms presented good and consistent results for typical FCC 
optimization problems. The neural model was also used in the design of a Model-Based 
Predictive Control (MPC) for the FCC process. It was showed that the ANN-based MPC 
was able to reject the imposed disturbance as well as to track the proposed trajectory, while 
considering operational constraints of the plant. 
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1. Introduction 

 
Globalization has led to the necessity 

of optimizing the operation of chemical 
plants in such a way that the optimization 
and control strategies must be the more 
sophisticated as possible. However, the 
processes involved in oil refineries are 
generally very complex and, therefore, 
there is not yet a precise answer to the 
question of how is best way to operate 
them. FCC is one of the most important 
processes in petroleum refineries due to 
the high commercial values of its 
products, e.g. gasoline and liquefied 
petroleum gas (LPG). These features 
imply that even little improvements in the 
operation of this process may lead to 
large economic benefits. Due to its multi-
variable, nonlinear features, complex 
dynamics, severe operating restrictions, 
and strong interactions among the process 
variables, FCC process is considered a 
challenging optimizing problem (Zanin et 
al., 2002; Vieira et al., 2005). 

The literature is relatively rich in 
studies on modeling and simulation of 
FCC units (Avidan and Edwards, 1990; 
Avidan and Shinnar, 1990; Arbel et al., 
1995; Moro and Odloak, 1995; Ellis et 
al., 1998). Some authors have developed 
models using fundamental principles, the 
so-called phenomenological models, 
where most of the equations that describe 
the process behavior are derived from 
mass, momentum, and energy balances, 
together with some empirical relations. 
Alaradi and Rohani (2002), and Jia et al. 
(2003) reviewed some published works 
on this subject, and found many FCC 
studies based on empirical or semi-
empirical models. Jia et al. (2003) 
proposed an identification procedure 
based on state space models. Ali and 
Elnashaie (1997) employed a nonlinear 
MPC algorithm with a modified state 
estimation scheme to solve the problem 
of stabilizing a FCC unit around a high 
gasoline yield, but unstable, operation 
point. Kalra and Georgakis (1994) 
presented a study that can help the 

understanding of how nonlinearity might 
restrict the effectiveness of linear control 
strategies, and thus provide motivation 
for nonlinear strategies. Other 
contributions on this topic can be found 
in Yang et al. (1996), and Zanin et al. 
(2002). 

The approach of most papers 
concerning the optimization of the FCC 
units are related to the selection of 
outputs and their appropriate reference 
values that will guarantee a probable 
optimal operation of the plant (Zanin et 
al., 2002). Thus, FCC modeling, control, 
and optimization have inspired the 
appearance of many papers in the 
literature during the last decades. Some 
of them can be found in McFarlane et al. 
(1993), Moro and Odloak (1985), Arbel 
et al. (1995), Ellis et al. (1998), Gouvêa 
and Odloak (1998a, 1998b), Odloak et al. 
(2000), Alaradi and Rohani (2002), Kasat 
et al. (2002), Zanin et al. (2002), Kasat 
and Gupta (2003), Vieira et al. (2005). 

Artificial Neural Networks (ANN) 
have been widely applied to identification 
and control of nonlinear dynamic systems 
(Narendra and Parthasarathy, 1990; Ng, 
1997; Hussain, 1999; Nørgaard et al., 
2000). One of the main reasons for this 
success is the universal approximation 
capability of the ANN, i.e., such models 
are able to approximate to arbitrary 
accuracy any continuous mapping 
defined on a compact (closed and 
bounded) domain (Jones, 1987; Hornik, 
1989; Cybenko, 1989). 

In recent years, there has been a 
strong interest in the use of neural 
networks to describe chemical processes, 
due to their ability to approximate highly 
nonlinear systems (Ng, 1997; Zhan and 
Ishida, 1997; Hussain, 1999; Nørgaard et 
al., 2000; Piché et al., 2000). Different 
architectures of neural networks have 
been used as nonlinear models to 
advanced control and optimization 
algorithms (Zhan and Ishida, 1997; Qin 
and Badgwell, 1998; Kambhampati et al., 
2000). Hussain (1999) presented a review 
of neural networks applications in 
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process control and optimization, 
pointing out that these nonlinear input-
output models are capable of identifying 
a great number of systems, and can be 
incorporated into various well-known 
nonlinear control and optimization 
methods. Alaradi and Rohani (2002) 
reported the use of neural network for the 
FCC dynamic identification and control. 
Vieira et al. (2005) implemented and 
evaluated the performance of an ANN-
based model predictive control in a FCC 
unit. These authors reported that the main 
advantage of neural networks in 
comparison to the rigorous model is the 
CPU processing time. 

Heuristic and meta-heuristic solution 
methods are widely used in practice, 
since they provide usable solutions to 
mathematical representations of real-
world situations. According to Silver 
(2004), the increasing use of such 
optimization methods is due to they do 
not require the often restrictive 
assumptions of optimization routines, and 
permit the use of more representative 
(rigorous) models of the real-world 
problems. Moreover, the author 
highlights others reasons for utilizing 
such algorithms: i) Ease of 
implementation, ii) Show improvement 
over current practices, iii) Exhibits fast 
results, iv) Robustness, and v) Possibility 
of use within optimization routines. 

A genetic algorithm (GA) is a search 
technique used in computer science to 
find approximate solutions to 
optimization and search problems. GA is 
a particular class of evolutionary 
algorithms (meta-heuristic solution 
methods) that uses techniques inspired by 
evolutionary biology such as inheritance, 
mutation, natural selection, and 
recombination (or crossover). In recent 
years, genetic algorithms have become a 
popular optimization tool, since it appears 
to provide a robust search procedure for 
solving difficult optimization problems. 
The feature of these algorithms is that 
they are based on ideas from the science 
of genetics and the process of natural 
selection. Kasat et al. (2002), and Kasat 

and Gupta (2003) obtained good results 
in the optimization of a FCC using GA-
based methods. According to the authors, 
several other interesting multi-objective 
optimization problems can also be 
formulated and solved by using GA. 

The term Particle Swarm 
Optimization (PSO) refers to a relatively 
new family of optimization algorithms. 
PSO is also a meta-heuristic solution 
method created by Kennedy and Eberhart 
(1995) on the 90’s. It is easily 
implemented and has proven to be very 
effective and quick when applied to a 
diverse set of optimization problems. It is 
inspired by the swarming or collaborative 
behavior of biological populations. 
Hassan et al. (2005) proposed a 
comparison between PSO and GA 
obtaining the same quality solutions, but 
PSO presented superior computational 
efficiency. The authors, however, 
signalize that the difference in 
computational effort between PSO and 
GA is problem dependent. 

Kasat and Gupta (2003) have 
discussed the suitability of using any 
reasonable model, even empirical, for 
simulation and for optimization of FCC 
units, provided the use of industrial data 
to tune the parameters usually associated 
with the model. 

In accordance to this approach, in the 
present work an ANN-based model was 
identified using a representative data set 
of the operational variables obtained from 
a phenomenological model of an 
industrial FCC. This phenomenological 
model was tuned with industrial data by 
Moro and Odloak (1995), and was used 
to simulate a real FCC process – the 
Kellog Orthoflow F Converter – 
operating at the Petrobras’ refinery of São 
José, State of São Paulo, Brazil. The 
neural model obtained was able to 
describe adequately the FCC dynamics 
for control and optimization purposes. 

The proposed optimizing framework 
uses the identified neural model to predict 
the process dynamics according to each 
set of manipulated variables generated by 
the GA and/or PSO algorithms. The 
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results are evaluated and classified 
according to their fitness. Evolutionary 
operators are then applied to the 
individuals (sets of manipulated 
variables) in order to obtain the set of 
manipulated variables that drives the 
process to some desired set-point and, 
simultaneously, obeys the process 
operational constraints. 

The same neural model was also 
used in the design of a Non-Linear 
Model-Based Predictive Control for the 
FCC process. It was showed that the 
ANN-based MPC was able to reject the 
imposed disturbance as well as to track 
the proposed trajectory, while keeping the 
process constraints of both, the 
manipulated and the controlled variables, 
into their operational ranges. 

The paper proceeds as follows: 
Section 2 presents the FCC process, its 
main features and behavior, as well as the 
description of the main process variables. 

Heuristic optimization methods are 
discussed in Section 3, where the GA and 
PSO evolutionary optimization methods 
are presented. Results are discussed in 
Section 4, separated into three parts: 
Process identification, process 
optimization, and process control. 
Finally, the concluding remarks are 
presented in Section 5. 
 
2. The Fluid Catalytic Cracking 
Process 

The FCC reactor/regenerator system 
studied in this work is the Kellog 
Orthoflow F Converter, operating at the 
Petrobras’ refinery of São José, State of 
São Paulo, Brazil. The FCC system is 
represented schematically in Figure 1, 
and a detailed description of this unit can 
be found in Gouvêa (1997), Gouvêa and 
Odloak (1998a, 1998b), and Zanin et al. 
(2002). 

 

 
Figure 1 – Schematic diagram of the FCC unit (adapted from Gouvêa, 1997). 

 

 
The FCC cracking reactions lead to 

lower boiling temperature products such 
as gasoline, liquefied petroleum gas 
(LPG), light cycle oil (LCO), butane, and 
gas. The converter is supposed to reduce 
the size of hydrocarbon chains of heavy 
petroleum fractions carried out by 
catalytic reactions. This process is 
extremely important because derived 

products of petroleum of high molecular 
weight (lower commercial value) are 
transformed into products of higher 
commercial values. The feed stock in this 
case study is gasoil. To guarantee 
adequate conversion and selectivity, the 
reaction temperature Trx (oC) must be 
kept in the range 520-550 oC. Secondary 
reactions generate coke, which is 
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deposited on the surface of the catalyst. 
The spent catalyst is continuously 
regenerated by burning the coke under 
controlled conditions to prevent the 
catalyst deactivation (Moro and Odloak, 
1995; Vieira et al., 2005). 

There are two main streams that are 
fed into the reactor: The stream named 
deasphalted oil, Rtf1 (m

3/h), which comes 
from the unit of treatment with propane, 
and the gasoil stream, Rtf2 (m3/h). These 
streams (Rtf1+ Rtf2= Rtf) are pre-heated 
and sent to the riser, RR, which is a tube 
where the cracking reaction and coke 
deposition take place. In the riser, the 
inlet stream with temperature Tfp (oC) is 
mixed with catalyst which comes from 
the regenerator, RG. The riser 
temperature has to be controlled to 
guarantee an adequate conversion of the 
cracking reaction. The opening of the 
catalyst valve, CTCV (%), located at to the 
bottom of the riser, may be manipulated 
in such a way that the cracking reaction 
can be adequately controlled. The 
products of the reaction, in the gas phase, 
leave the riser and are separated from the 
catalyst in a separation vessel named 
reactor, RX. FCC products are sent to the 
main fractionator, MF, and the catalyst 
flows to the regenerator, where the 
catalyst is regenerated. Coke deposited on 
the surface of the catalyst is burned with 
air, whose flow rate, Rai (ton/h), can be 
manipulated. The catalyst regenerator can 
be divided into several parts. Catalyst 
coming from the reactor is deposited on 
the first stage of the dense phase, rg1, 

from where it falls into the second stage 
of the dense phase, rg2, and is further sent 
to the riser. Gases from combustion fill in 
the so called diluted phase. Three distinct 
zones can be identified in the diluted 
phases from first, d1, and second, d2, 
stages (formed from the gases leaving the 
dense phases), and the general diluted 
phase, dig, formed from the gases coming 
from the first and second diluted phases. 
The flue gases from the general diluted 
phases are then sent to a boiler where CO 
is further converted into CO2. The 
temperatures in the regenerator, Trg1, Trg2, 
Td1, Td2, and Tdig (

oC), must be controlled 
in order to avoid metallurgical damages 
(Zanin et al., 2002). 

Due to extremely severe operating 
conditions, a rigorous control strategy is 
necessary. Several variables are chosen as 
controlled variables in the industry, 
depending on the operating point, 
economical objectives, as well as the 
priority of production of one of the 
products. In the present work, the main 
controlled variables are: the riser 
temperature (Trx), temperatures of the 
dense phase in the first and second stages 
of the regenerator (Trg1 and Trg2), and the 
cracking reaction severity, Sev 
(dimensionless). The manipulated 
variables are: Total feed flow-rate to riser 
(Rtf), opening of the catalyst valve (CTCV), 
air flow-rate to regenerator (Rai), and 
temperature of the feed stream (Tfp). 

The reference steady state, and the 
operational range allowed for the main 
process variables are listed in Table 1. 

 
Table 1 – Operational range and steady-state values of the main process variables. 

PROCESS VARIABLES 
OPERATIONAL RANGE 

STEADY STATE 
max min 

CONTROLLED 

VARIABLES 

Trg1 (°C) 710 640 670.15 
Trg2 (°C) 710 640 700.89 
Sev 92 70 77.49 
Trx (°C) 545 520 542.20 

MANIPULATED 
VARIABLES 

Rai (ton/h) 231 201 221 
CTCV (%) 92 42 82 
Rtf  (m

3/h) 410 208.4 404.17 
Tfp (°C) 245 215 235 
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3. Heuristic Optimization Methods 
Typical chemical engineering 

problems involve several objective 
functions, often conflicting, non-
commensurate, and with constraints. 
Moreover, these objective functions are 
non-trivial and one might need to carry 
out multi-objective optimization 
techniques in order to solve these real-
world systems (Edgar and Himmelblau, 
1989). 

Unfortunately, classical optimization 
methods cannot provide, in many cases, 
solutions to these problems, and this lack 
encouraged the development, in the last 
decades, of several heuristic tools for 
solving such optimization problems. 
Among these new heuristic optimization 
methods, there are evolutionary 
heuristics, population-based search 
methods like Genetic Algorithms (GA) 
and Particle Swarm Optimization (PSO) 
(Kasat and Gupta, 2003). 
 
3.1 Genetic Algorithms 

Genetic algorithms originated from 
the studies of cellular automata, in the 
1980s, conducted by John Holland and 
his colleagues at the University of 
Michigan, but until 1989 no commercial 
application of GA was reported. 
Nowadays, however, custom computer 
applications began to emerge in a wide 
variety of fields, and these algorithms are 
now used by many companies to solve 
difficult scheduling, data fitting, trend 
spotting, budgeting and virtually any 
other type of combinatorial optimization. 
Since their inception decades ago, genetic 
algorithms, and its many versions, have 
evolved and becoming popular mainly 
because of its intuitiveness, ease 
implementation, and the ability to 
effectively solve typical complex 
engineering problems (Hassan et al., 
2004; McCall, 2005). GA operates on a 
population of artificial chromosomes, 
each one representing a solution to the 
problem as a real number which measures 
how good this solution is to the specific 
problem (Michalewicz and Fogel, 2002; 
McCall, 2005). 

Genetic algorithms are typically 
implemented as a computer simulation in 
which a population of abstract 
representations (called chromosomes) of 
candidate solutions (called individuals) to 
an optimization problem evolves toward 
better solutions. Traditionally, solutions 
are represented in binary format as strings 
of zeros and ones, [0, 1, 1, 0, 1, 0, …], 
but different encodings are also possible. 
These algorithms work with a population 
of solutions, and at each iteration, the 
fitness of the whole population is 
evaluated, multiple individuals are 
stochastically selected from the current 
population (based on their fitness), and 
modified (mutated or recombined) to 
form a new population, which becomes 
current in the next iteration of the 
algorithm. The evaluations allow 
selecting a subset of the solutions to be 
either used directly in the next population 
or indirectly through some form of 
transformation or variation (Whitley, 
1994; Michalewicz, 1999; Schmitt, 2001; 
Michalewicz and Fogel, 2002; Schmitt, 
2004; Silver, 2004). 

Two elements are required for any 
problem before a genetic algorithm can 
be used to search for a solution: 1) There 
must be a method of representing a 
solution in such a way that it can be 
manipulated by the algorithm. 
Traditionally, a solution can be 
represented by a string of bits, numbers 
or characters, and; 2) There must be some 
method of measuring the quality of any 
proposed solution, the fitness function. 
The fitness of the solution would be 
measured by determining the total weight 
of the proposed solution. The higher the 
weight, the greater the fitness, provided 
that the solution is possible. The main 
steps of the GA algorithm are 
summarized below (Whitley, 1994; 
Michalewicz, 1999; Schmitt, 2001; 
Michalewicz and Fogel, 2002; Schmitt, 
2004; McCall, 2005): 
Initialization: Initially, many individual 
solutions are generated to form an initial 
population. The population size depends 
on the nature of the problem, but 
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typically contains several hundreds or 
thousands of possible solutions. 
Traditionally, the population is generated 
randomly, covering the entire range of 
possible solutions (the search space). 
Occasionally, the solutions may be 
“seeded” in areas where optimal solutions 
are likely to be found. 
Selection: During each successive epoch, 
a proportion of the existing population is 
selected to breed a new generation. 
Individual solutions are selected through 
a fitness-based procedure, where fitter 
solutions (as measured by a fitness 
function) are typically more likely to be 
selected. Certain selection methods rate 
the fitness of each solution and 
preferentially select the best solutions. As 
this process may be very time-
consuming, other methods rate only a 
random sample of the population. Most 
functions are stochastic and designed so 
that a small proportion of less fit 
solutions are selected. This procedure 
helps to keep the diversity of the 
population large, preventing premature 
convergence and poor solutions. Popular 
and well-studied selection methods 
include roulette wheel, and tournament. 
Reproduction: The next step is to 
generate a second generation population 
of solutions from those selected through 
genetic operators: crossover (or 
recombination), and mutation. To 
produce a new solution, a pair of “parent” 
solutions is selected for breeding from the 
pool selected previously. By producing a 
“child” solution, using the crossover and 
mutation operators, a new solution is 
created which typically shares many of 
the characteristics of its “parents”'. New 
parents are selected for each child, and 
the process continues until a new 
population of solutions of appropriate 
size is generated. These processes 
ultimately result in the next generation 
population of chromosomes that is 
different from the initial generation. 
Generally, the average fitness will have 
increased by this procedure, since only 
the best organisms from the first 
generation are selected for breeding. 

Termination: This process is repeated 
until a termination condition has been 
reached. Common terminating conditions 
are: i) A solution that satisfies the 
minimum criteria is found; ii) The 
defined number of generations is reached; 
iii) The highest ranking solution’s fitness 
is reached. 
 

The simplest algorithm represents 
each chromosome as a bit string. 
Typically, numeric parameters can be 
represented by integers, though it is 
possible to use floating point 
representations. The basic algorithm 
performs crossover and mutation at the 
bit level. Other variants treat the 
chromosome as a list of numbers which 
are indexes into an instruction table, 
nodes in a linked list, hashes, objects, or 
any other imaginable data structure. 
Crossover and mutation are performed so 
as to respect data element boundaries. For 
most data types, specific variation 
operators can be designed. Different 
chromosomal data types seem to work 
better or worse for different specific 
problem domains. A slight, but very 
successful variant of the general process 
of constructing a new population, is to 
allow some of the better organisms from 
the current generation to carry over to the 
next, unaltered. This strategy is known as 
elitist selection. Other variants, like 
genetic algorithms for online 
optimization problems, introduce time-
dependence or noise in the fitness 
function (Whitley, 1994; Michalewicz, 
1999; Schmitt, 2001; Michalewicz and 
Fogel, 2002). 
 
Standard Genetic Algorithm: 
1. Generate initial population. 
2. Evaluate the fitness of every 

individual in the population. 
3. Select pairs of best-ranking 

individuals (parents) to reproduce. 
4. Breed new generation through 

crossover operator. 
5. Select individuals to apply the 

mutation operator. 
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6. Use elitism operator to preserve the 
best solution. 

7. Repeat steps 3 to 6 until terminating 
condition is reached. 

 
3.1.1 The Genetic Algorithm for 
FCC Optimization 

The specific GA implemented in this 
work was partially based on the paper of 
Hassan et al. (2004). The basic binary 
encoded GA with tournament selection 
was used. The crossover probability and 
mutation rate were fixed in 80% and 2%, 
respectively. 

The genetic algorithm for FCC 
optimization was adapted in order to find 
the suitable set of manipulated variables 
(Rtf, Tfp, CTCV, and Rai) to drive the 
controlled variables of the process (Trx, 
Trg1, Trg2, and Sev) from one operating 
point to another. In this study, the riser 
temperature, Trx, was chosen as the main 
controlled variable. In this sense, the 
optimization problem is to reach a 
specific set-point for Trx, while keeping 
the process constraints of both, the 
manipulated and the controlled variables, 
into their operational limits. The neural 
model of the process was used to predict 
the new operating points of the process, 
corresponding to each set of the 
manipulated variables generated by the 
GA. A brief description of the proposed 
GA is listed below: 
� Individuals: Each individual represents 

a set of manipulated variables, [Rtf, Tfp, 
CTCV, Rai], generated by the genetic 
algorithm. The best individual, selected 
by the evolutionary operators, is the 
solution of the optimization problem. 
This solution corresponds to the set of 
manipulated variables that will drive the 
process to the specified set-point for Trx. 
The initial population was created with 
30 individuals, and the number of 
generations was set as 10. 

� Population: Defined as the set of 
individuals, each one representing a set 
of manipulated variables, whose initial 
values were randomly generated by the 
GA. 

� Stop criteria: In order to verify the 
convergence of the optimization 
algorithm, a stop criterion was defined 

as: %
T

TT

set_rx

pred_rxset_rx 2≤
−

 

 
where Trx_set and Trx_pred are the desired 
set-point, and the value of Trx predicted 
by the neural model, respectively, for a 
given set of manipulated variables 
generated by the GA. 
 
3.2 Particle Swarm Optimization 

Particle swarm optimization (PSO) is 
a heuristic search method that was 
developed by Kennedy and Eberhart 
(1995) while attempting to simulate the 
choreographed, graceful, but 
unpredictable, motion of swarms of birds 
as a part of socio-cognitive study 
investigating the notion of collective 
intelligence in biological populations. 
PSO’s mechanics are inspired by the 
collaborative behavior of biological 
populations. If one “individual” sees a 
desirable path to go (i.e., for food, 
protection, etc.), the rest of the swarm 
will be able to follow it quickly, even if 
they are on the opposite side of the 
swarm. PSO is similar to GA in the sense 
that these two evolutionary heuristics are 
population-based search methods. In 
other words, both methods move from a 
set of points (population) to another set of 
points in a single iteration, with likely 
improvement using a combination of 
deterministic and probabilistic rules. The 
main difference between these two 
methods is that the particle (individual) in 
the PSO is kept untouched, the individual 
only moves on the design space without 
getting any older (Hassan et al., 2004). 

PSO is modeled by particles in 
multidimensional space that have a 
position and a velocity. These particles 
are flying through hyper-space, and 
remember the best position that they have 
seen. Members of a swarm communicate 
good positions to each other, and adjust 
their own position and velocity based on 
these good positions. The basic PSO 
algorithm consists of three steps 
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(Kennedy and Eberhart, 1995): i) 
Generate particles with specific positions 
and velocities; ii) Update velocity, and; 
iii) Update position. 

The position and the velocity are 
updated through the following formulas 
at each iteration: 
 

vxx +=  (1) 
( ) ( )xxrcxxrcwvv

*

g

* −+−+= 2211  (2) 

 
where w is the inertial constant (standard 
values are usually slightly less than 1); c1 
and c2 are constants that means how 
much the particle is directed towards 
good positions (good values are usually 
right around 1); r1 and r2 are random 
values in the range [0,1]; x

* is the best 
position the particle has seen; and xg

* is 
the global best seen by the swarm, that 
can be replaced by xl

*, the local best, if 
neighborhoods are being used. The 
standard PSO algorithm is the following: 
 
Standard PSO Algorithm: 
1. Initialize x and v of each particle with 

a random value. The range of these 
values may be domain specific. 

2. Initialize each x
* to the current 

position. 
3. Initialize xg

* to the position that has 
the best fitness in the swarm. 

4. Loop while the fitness of xg
* is below 

a threshold, and the number of 
iterations is less than some 
predetermined maximum. 

For each particle, do the following: 
i. Update x according to the 

equation (1). 
ii. Calculate fitness for the new 

position. 
iii. If it is better than the fitness of 

x
*, replace x*. 

iv. If it is better than the fitness of 
xg

*, replace xg
*. 

v. Update v according to the 
equation (2). 

 
3.2.1 The PSO for FCC 
Optimization 

The standard PSO algorithm was 
adapted for the FCC optimization 

problem in order to provide the suitable 
set of manipulated variables, (Rtf, Tfp, 
CTCV, and Rai), to reach the set-point for 
the riser temperature, Trx. In this case, 
each particle in the swarm corresponds to 
a set of manipulated variables. It was 
established that the values of all particles 
should take into account the operational 
limits of the process variables before they 
are applied to the dynamic neural model. 
The particles that did not fit these limits 
were discharged. This procedure restricts 
the design space, and causes a decrease 
on the swarm size. However, this 
methodology helps to find the optimal set 
of manipulated variables, since the swarm 
is kept inside a suitable search space. In 
this work, the initial number of particles 
was set as 1000, with null initial velocity. 
The self-confidence, and the swarm 
confidence factors were set as c1 = 0.9, 
and c2 = 1.1, respectively. 
 
4. MODEL PREDICTIVE CONTROL 

The goal of a model predictive 
controller is to calculate a set of future 
control actions that minimize the 
following objective function: 
 

( )

( )∑ ∑

∑ ∑

= =

−+

= =

++

∆

+−=

m u

c y

V

j

N

i

ik,jj

V

j

N

Ni

ik,j

c

ik,jj

u

wŷJ

1 1

2
1

1

2

1

λ

δ

(3) 

 
where Vc and Vm are the number of 
controlled and manipulated variables, 
respectively, δ and λ are weighting 
factors (tuning parameters). The 
parameters δj are used to add a degree of 
freedom in the adjustment of actions for 
each controlled variable, and λj are used 
to penalize the control actions. ∆uj are the 
increments in the manipulated variables, 
N1 is the initial horizon, Ny is the 
prediction horizon, Nu is the control 
horizon, wj are the reference trajectories 
(set-points) and c

jŷ  are the corrected 

model predictions. 
The predictions are obtained 

recursively through Ny future predictions 
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for each controlled variable, Vc, and 
corrected as follows: 
 

( )
ykik

c

ik N,,idŷŷ K1=+= ++  (4) 

 
In equation (4), iky +

ˆ  are the model 

predictions for the controlled outputs of 
the process at the future sampling time, 
k+i, and dk are the correction terms given 
by kkk yyd ˆ−= , where yk are the 

measured process outputs at the present 
sampling instant, and kŷ  are the 

respective predictions of the model 
(evaluated at the previous sampling 
instant). The optimization algorithm of 
the MPC structure calculates the 
increments of the control actions for the 
manipulated variables, ∆u, in order to 
minimize the objective function given by 
the equation (3). 

The future control actions are then 
derived from the optimized control 
increments, given by the equation (5). 
 

( )101 −=∆+= +−++ uikikik N,,iuuu K  (5) 

 
It is important to note that only the 

first Nu control actions are optimized, 
while the others are kept constant, i.e.: 
 

( )11 −== −++ yuNkik N,,Niuu
u

K  (6) 

 
The optimization problem is also 

subject to restrictions, and the receding 
horizon strategy was adopted (Clarke, 
1994; Camacho and Bordons, 1999), 
where only the first control action for 
each variable manipulated (uk) is 
implemented, and the optimization 
problem is solved again at each sampling 
instant. 

The optimization problem (with 
restrictions) is solved by Successive 
Quadratic Programming technique (Edgar 
and Himmelblau, 1989). 

For the specific case study of the 
FCC unit, the operational restrictions are 
given by: 
� Restrictions imposed on the 

controlled variables: 
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� Restrictions imposed on the 

manipulated variables: 
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� Restrictions imposed on the control 

actions: 
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5. RESULTS AND DISCUSSIONS 

The results related to the process 
identification, optimization, and control 
proposed to the FCC process are 
presented below. 
 
5.1 Process Identification 

The Artificial Neural Network 
(ANN) used in this work is a Multi-Input 
Multi-Output (MIMO) Multi-Layer 
Perceptron (MLP), with hyperbolic 
tangent and linear activation functions in 
the neurons of the hidden and output 
layers, respectively. The MLP model was 
trained with an optimization algorithm 
that uses the Modified Scaled Conjugate-
Gradient (Castro and Von Zuben, 1998). 
The model accuracy was evaluated 
considering the final prediction error, and 
the performance of the neural model for 
both, one-step-ahead, and recursive 
predictions. 
 
5.1.1 Data Generation and 
Sampling 
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A process simulator of the FCC 
process, validated by Moro and Odloak 
(1995) with experimental data at the 
Petrobras’ refinery, was used to generate 
a representative data set that contains the 
input and output signals related to 600 
hours of the process operation. Starting 
from the reference steady-state of this 
process, a sequence of steps was applied 
in the manipulated variables, and the 
responses of the process (the 
corresponding values of the controlled 
variables) were recorded. 
 
5.1.2 ANN Structure Selection 

The structure of the neural model 
was selected considering the main 
process variables. In this case, structure 
selection refers to the choice of the 
number of hidden neurons, the regression 
vectors, and the input and output 
variables of the neural model. 

Many different network structures 
were tested, and the number of hidden 
neurons (NHN), as well as the order of the 
regression vectors were obtained by trial-
and-error procedures. Priority was given 
to parsimony principle, i.e., to the neural 
model with the small number of hidden 
neurons, as well as to those models with 
smaller regressors, especially with 
respect to the output variables because 
they are subject to predictions errors 
(over greater-than-one horizons). Four 

hidden neurons were found as the best 
choice for this model, and the regression 
vectors were set as one time delay for 
each controlled variable, and three time 
delays for each manipulated variable. 
Thus, the resulting neural model presents 
sixteen inputs: 

 
[Rai (k-1), Rai (k-2), Rai (k-3)], 
[Rtf (k-1), Rtf (k-2), Rtf (k-3)], 
[CTCV (k-1), CTCV (k-2), CTCV (k-3)], 
[Tfp (k-1), Tfp (k-2), Tfp (k-3)], 
[Trx (k-1)], 
[Trg1 (k-1)], 
[Trg2 (k-1)], 
[Sev (k-1)] 
 
and four outputs: 
[Trx (k)], [Trg1 (k)], [Trg2 (k)], [Sev (k)], 
 
where k is the sampling instant. 

The parameters of the proposed 
neural model were estimated using the 
first half of the generated data set, 
corresponding to 300 hours of input-
output pairs. The second half of the data 
set was used for the validation of this 
model. The values presented in Table 2 
correspond to the average (considering 
the results of three training procedures) of 
the mean squared error of the predictions 
errors provided by the selected neural 
model. 

 
Table 2 – Mean squared prediction errors for the selected MLP MIMO model (NHN = 4). 

Prediction Trg1 (
oC) Trg2 (

oC) Severity Trx (
oC) 

One-Step Ahead 0.0130 0.0217 0.0533 0.0450 
Recursive Simulation 0.0929 0.1607 0.0965 0.0814 

 
 

Figures 2 to 5 show that the 
resulting neural model was able to 
represent adequately the dynamic 

behavior of the controlled variables in 
both, One-step-ahead (top) and recursive 
predictions (bottom). 
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Figure 2 – Process output and neural model predictions for Trx. 
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Figure 3 – Process output and neural model predictions for Trg1. 
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Figure 4 – Process output and neural model predictions for Trg2. 
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Figure 5 – Process output and neural model predictions for Severity. 

 
 

These figures illustrate the good 
performance of the neural model, 
especially considering the long-range 
prediction horizons involved in recursive 
predictions. 
 
5.2 Process Optimization 

The results obtained with the 
proposed evolutionary optimization 
methods (PSO and GA) were compared 
each other in the FCC problem 
considering two performance tests 
suggested in Hassan et al. (2004). The 
first performance evaluation was carried 
out by the effectiveness test, which 
measures the quality of the solutions 
found by the heuristic algorithm with 
respect to suitable solutions for the 
proposed problem. The second test was a 
measure of efficiency. This test 
investigates the computational effort of 
the algorithms for a sample problem 
using the same convergence criteria. 

In this work, the effectiveness was 
measured by how close the solutions 
provided by the evolutionary algorithms 
were to those provided by the 
phenomenological model. The 
effectiveness of the algorithms was 
evaluated with equation (10). 
 

%
alRe

alReEvol
E

solution

solutionsolution −
=  (10) 

 
where Evolsolution is the solution provided 
by the evolutionary algorithms, and 

Realsolution is the solution provided by the 
phenomenological model, representing 
the plant outputs when subjected to the 
same set of manipulated variables 
imposed to the evolutionary algorithms. 

Although this method does not 
guarantee that the solution obtained with 
the algorithm is the optimum, it allows us 
to verify that these solutions are not far 
from the real process responses, given by 
the phenomenological model. Moreover, 
despite of GA and PSO are different 
evolutionary methods, the solutions 
provided by both algorithms shown to be 
very similar (see Tables 3 to 5). These 
results suggest that the heuristic solutions 
should be, at least, near to the optimal 
solution for the proposed problem. 

The first optimization problem 
requires that the evolutionary algorithms 
provide the suitable set of manipulated 
variables in order to operate the plant 
with the riser temperature set at 
Trx = 543.5 oC. The other controlled 
variables (Trg1, Trg2, and Sev) were 
allowed to vary inside their operational 
range, defined in Table 1. The stop 
criterion for both algorithms was defined 
as: 
 

%
T

TT

alRerx

EvolrxalRerx 2≤
−

−

−−  (11) 

 
where Trx-Evol is the solution provided by 
the evolutionary algorithm, and Trx-Real is 
the solution provided by the 
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phenomenological model (representing 
the FCC outputs). 

The results obtained with GA and 
PSO algorithms are shown in Table 3. 

 
Table 3 – Results for the first optimization problem. 

 
Genetic Algorithm Particle Swarm Optimization 

GA Real Error (%) PSO Real 
Error 
(%) 

Trg1 (°C) 680.10 676.40 0.55 696.45 701.24 0.68 
Trg2 (°C) 714.49 705.80 1.23 721.13 724.80 0.51 
Severity 74.49 75.90 1.86 77.02 78.35 1.69 
Trx (°C) 543.68 543.99 0.06 543.51 547.03 0.64 
Rai (ton/h) 201.00 201.00 

 

228.80 228.80 

 
CTCV (%) 0.64 0.64 0.67 0.67 
Rtf  (m

3/h) 353.65 353.65 361.84 361.84 
Tfp (°C) 226.90 226.90 232.60 232.60 

 
 

In order to evaluate the performance 
of the evolutionary algorithms in 
problems with a higher level of 
complexity, a second optimization 
problem was proposed. Now, the set-
point for the riser temperature was kept 
the same (Trx = 543.5 oC), but the 

operational range allowed for the 
temperature of the first stage was reduced 
to 673.0 oC < Trg1 < 675.0 oC. 

The results obtained with GA and 
PSO algorithms are shown in Tables 4 
and 5. 

 
 

Table 4 – GA results for the second optimization problem. 

 Test 1 Test 2 Test 3 
GA Real Error (%) GA Real Error (%) GA Real Error (%) 

Trg1 (°C) 673.32 666.68 0.99 673.23 671.62 0.24 674.00 669.01 0.74 

Trg2 (°C) 714.51 696.71 2.55 715.18 702.96 1.74 715.43 699.03 2.35 

Severity 79.56 76.64 3.81 75.57 76.53 1.26 75.17 76.75 2.06 

Trx (°C) 541.39 535.03 1.19 544.61 538.59 1.12 542.53 537.90 0.86 

Rai (ton/h) 207.22 207.22 

 

225.92 225.92 

 

207.45 207.45 

 
CTCV (%) 0.73 0.73 0.79 0.79 0.74 0.74 

Rtf  (m
3/h) 371.29 371.29 404.74 404.74 381.88 381.88 

Tfp (°C) 219.12 219.12 228.36 228.36 233.95 233.95 

 
Table 5 – PSO results for the second optimization problem. 

 Test 1 Test 2 Test 3 
PSO Real Error (%) PSO Real Error (%) PSO Real Error (%) 

Trg1 (°C) 673.80 668.62 0.77 674.07 670.70 0.50 674.49 673.99 0.07 

Trg2 (°C) 714.91 699.23 2.24 715.81 700.98 2.11 715.67 705.16 1.49 

Severity 76.15 76.85 0.91 74.95 76.76 2.35 74.92 76.56 2.14 

Trx (°C) 543.50 536.37 1.33 543.46 539.53 0.73 543.50 540.21 0.61 

Rai (ton/h) 215.82 215.82 

 

211.20 211.20 

 

222.81 222.81 

 
CTCV (%) 0.76 0.76 0.75 0.75 0.78 0.78 

Rtf  (m
3/h) 9101.80 9101.80 9416.68 9416.68 9748.47 9748.47 

Tfp (°C) 215.68 215.68 240.57 240.57 238.90 238.90 
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The results shown in Tables 4 and 5 
reveal that the evolutionary algorithms 
were able to deal with the proposed 
optimization problems. Once more, it can 
be seen that the solutions found for both 
algorithms are very similar and coherent 
with the expected process behavior. 
However, PSO required less 
computational effort to find a suitable 
solution for the optimization problem. 

The efficiency, or computational 
effort, was inferred by comparing the 
processing time of both algorithms for 
the same stop criteria. The average 
processing time (running on Intel Core2 
Duo, 2.0 GHz) using GA was about 3.2 
minutes, while the PSO algorithm spent 
about 0.9 minutes. 
 
5.3 Process Control 

The multivariate nature of the FCC 
unit, the strong interactions among the 
variables, the non-linear behavior of this 
process that leads to the need for a non-
linear control, and the demand on 
operating the unit under process and 
materials constraints, are some of the key 
challenges in the design and 
implementation of the control of the FCC 
unit. Considering these features, the 
model-based predictive control (MPC) is 
a good candidate for implementing an 
advanced control in FCC units (Cristea et 
al., 2003). 

In this work, the neural model 
identified for the FCC unit (Section 0) 
was used in the design of a non-linear 
model predictive control for this process, 
and the parameters of the controller were 
tuned as N1 = 1, Ny = 30, Nu = 2, 

[ ]T1355 10101010 −−−−=δ , and 

[ ]T.... 001000010010010=λ . 
 
The performance of the ANN-based 

MPC is presented below, where the 
controller was tested in servo and 
regulatory problems. In this sense, it was 
imposed that the main controlled variable 
(Trx) should follow a reference trajectory, 
while the others controlled variables 
(Trg1, Trg2, Sev) should remain as close as 
possible to their steady-state values, and 
inside the operational range (see Table 1). 

The behavior of the controlled 
variables under regulatory control 
problem is shown in Figures 6 to 9. In 
this test, a disturbance in the air 
temperature of the regenerator (from 
190 oC to 200 oC) was imposed on the 
FCC process after 100 minutes of 
operation. 

It can be noticed from Figure 6 that 
the main controlled variable, Trx, was 
kept very close to the set-point by the 
multivariable ANN-based MPC. 
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Figure 6 – Open and closed loop responses of Trx in the regulatory control problem. 

 
 

Figures 7 to 9 show that the others 
controlled variables (Trg1, Trg2, Sev) were 

kept inside the operational range, as well 
as that the MPC controller was able to 
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keep them closer to their set-points when compared to the open loop response. 
 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
670

672

674

676

678

680

682

Time (min)

T
rg

1
 (

o
C

)

 

 

Closed Loop

Set-point

Open Loop

 
Figure 7 – Open and closed loop responses of Trg1 in the regulatory control problem. 
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Figure 8 – Open and closed loop responses of Trg2 in the regulatory control problem. 
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Figure 9 – Open and closed loop responses of Severity in the regulatory control problem. 

 
 

The behavior of the main controlled 
variable under servo control problem is 
shown in Figure 10, where it is required 
to track a set-point change from 542.2 oC 

to 535.0 oC, while the others controlled 
variables should be kept as close as 
possible to their nominal values. 
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Figure 10 – Open and closed loop responses of Trx in the servo control problem. 
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Figure 11 – Open and closed loop responses of Trg1 in the servo control problem. 
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Figure 12 – Open and closed loop responses of Trg2 in the servo control problem. 
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Figure 13 – Open and closed loop responses of Severity in the servo control problem. 

 
 

The behavior of the controlled 
variables of the FCC unit in typical 
operating conditions (Figures 6 to 13) 
shows that the proposed ANN-based 
MPC was able to control the process 
appropriately. 

 
6. CONCLUSIONS 

In order to obtain a non-linear model 
of the FCC unit for further use in process 
optimization and control, an 
identification procedure for this process, 
based on artificial neural networks, was 
described. A fully connected multi-layer 
feed-forward network was chosen to 
model the FCC process from typical 
operational data, and the structure 
determination of the ANN (input and 
output variables, number of hidden 
neurons, and the regression vectors) was 
also discussed. The resulting neural 
model presents sixteen inputs, four 
hidden neurons, and four outputs. It was 
illustrated by simulations that the neural 
model was able to adequately describe 
the process dynamics, especially 
considering the good performance for 
long-range predictions. 

One of the most interesting features 
of the ANN paradigm for modeling the 
FCC unit is the relative easiness for 
identifying a new model (set of adjustable 
parameters) when changes take place in 
the operating conditions, as typically 
occur in the Brazilian refineries due to 
changes in the crude oil to be processed, 
for example. In this case, the neural 
model can be adapted by a retraining 

procedure, adding a new data set with 
recent process conditions to the original 
database. 

Two evolutionary optimization 
methods, Genetic Algorithm and Particle 
Swarm Optimization, were used in two 
optimization problems for the FCC 
process. The solutions provided by both 
algorithms showed to be similar and 
consistent with the expected process 
behavior, which indicates that the 
population-based optimization methods 
show great potential to be used in real-
world process optimization problems. 

Considering the operational 
constraints of the FCC unit, i.e., the 
complex dynamics of the process, the 
reaction that occurs in 2 to 5 seconds, 
besides the multivariate characteristic, 
nonlinear dynamics and strong coupling 
of variables of this process, the 
performance of the proposed ANN-based 
MPC proved to be satisfactory. The 
controller was able to reject the 
disturbance imposed on the process, as 
well as proved to be efficient to track a 
trajectory established for the riser 
temperature (Trx), while keeping the 
others controlled variables within the 
operating range. 
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