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Abstract: The paper presents an original method to determine the velocities and the accelerations at the MP-
3R structures. At the 3R structure (spatial) are known (imposed) the angular speeds of actuators and must be
determined the velocities and the accelerations of the endeffector point M. Starting from the MP-3R direct
kinematic positions system, deriving these relations system in function of the time, one time and then a second
time (the second derivation) one obtains first the system velocities, and second time the accelerations of the
point endeffector M. The system which must be solved has three equations and three independent parameters
to determine. Constructive basis is represented by a robot with three degrees of freedom (a robot with three
axes of rotation). If one study (analyzes) an anthropomorphic robot with three axes of rotation (which
represents the main movements, absolutely necessary), it already has a base system, on which one can then
add other movements (secondary, additional). All calculations were arranged and in the matrix form.
Keywords: Anthropomorphic robots, direct kinematics, 3R systems, matrix systems, velocities,

accelerations.
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1. Introduction

Although the anthropomorphic robots, have different structural forms, in recent years
have been developed especially those with rotating movements, with three or more axis.
Constructive basis is represented by a robot with three degrees of freedom (a robot with three
axes of rotation) [1]. If one study (analyze) an anthropomorphic robot with three axes of rotation
(which represents the main movements, absolutely necessary), we already have a base system, on
which we can then add other movements (secondary, additional). The base system has three rotary
axes: a vertical axis (by this axis all the system is rotated, for positioning), and two horizontal
axes (each making possible a rotation of an arm). Calculations were arranged and in the matrix
form.

In direct kinematics are known the kinematic parameters (input parameters) which are the
absolute rotation angles of the three mobile elements: @10, @20, @30, the rotation angles of the three
actuators (electric motors, mounted in the rotational kinematic couplings), and the determined
parameters (the output parameters) are the three absolute coordinates Xm, ym, Zm Of the point M,
ie kinematic parameters (coordinates) of the endeffector (which can be a hand, to grabbed, a
soldering tip, painted, cut, etc).

In inverse kinematics [2-8], one already knows the coordinates Xm, Y, Zm 0f the point M,

and must be determined the independent rotations ¢,,, @,,, @;, of the three mobile elements,

based on kinematic parameters imposed to the endeffector Xm, ym, zm, known (forced).

With the independent determined angles, is then to be calculated the relative rotation
movements, of the three driving motors, from the rotating couplers [7].

Considering the positions already determined, it imposes the problem of determining the

velocities and accelerations of the system.

2. Determining the positions at the 3R robots (systems)

Kinematics of serial manipulators and robots will be illustrated by a 3R kinematic model
(see Fig. 1), a medium difficulty system, ideal for understanding the phenomenon, but also to
specify the basic knowledge necessary for starting calculations for systems simpler and more

complex.
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Figure 1. Geometry and direct kinematics to a MP-3R

Fixed coordinate system was noted with xoOgyozo. Mobile systems related to (reinforced
by) the three mobile elements (1, 2, 3) have indices 1, 2 and 3. Their orientation was chosen
conveniently. Known kinematic parameters (input parameters in direct kinematics) are absolute
rotation angles of the three mobile elements: @10, @20, @30, the rotation angles of the three actuators
(electric motors, mounted in the rotational kinematic couplings). Determined parameters (output
parameters) are the three absolute coordinates Xm, ym, Zm Of the point M, ie kinematic parameters
(coordinates) of the endeffector (which can be a hand, to grabbed, a soldering tip, painted, cut,
etc).

To begin one writes vector matrix (Ao1) which change the coordinates of the origin of the
coordinate system, by linear moving (displacement) from Og to O1, when the axes remain parallel

to each other permanently (see Eq. 2.1).

0
Ay =10 (21)
8

Next we write the rotation matrix Toi1, which rotates system x;:01y1z; in rapport with the

system XoOoYoZo (it is a 3x3 square matrix; see the relationship 2.2).

x P 7«

T01: ay ﬁy 7/y =

- - (2.2)
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On the first column (which represents the coordinates of the rotated axis O1x1) it writes
the coordinates of the unit vector of O1xy in rapport of the old system XoOoYozo (translated into O1
but without rotation; see the relationship 2.3).

a (2.3)

On the second column of the matrix Toz it writes the coordinates of the unit vector of the
rotated axis Oay: in rapport of the old system xoOoYozo (translated into O; but without rotation
system; see the relationship 2.4).

By
B, (2.4)
B,

On the third column of the matrix To it writes the coordinates of the unit vector of the
rotated axis O1z; in rapport of the old system XoOgYozo (translated into O; but without rotation

system; see the relationship 2.5).

Y
7y (2.9)

I
In the elected case (figure 1), the unit vector of the rotated axis O1x1, has in rapport of

the old system x0OoYozo, translated into O1 without rotation, the coordinates given by the column
unit vector (relationship 2.6).

a, =1-cosg,, =Ccose,,
a,=1-sing,=sing, (2.6)
a,=1-c0s90° =1-0=0

The unit vector of the rotated axis O1y1, has in rapport of the old system of axes XoOoYoZo
(translated into O1 without rotation), coordinates data unit vector column (relationship 2.7).
B, =1-co8(7/2+¢,)=—sing,
B, =Lsin(z/2+g¢,)=cosp, | (2.7)
B, =1-cos(7/2)=1-0=0

The unit vector of the rotated axis O1z; has in rapport of the old system of axes XoOoYoZo

(translated into O without rotation), coordinates data unit vector column (relationship 2.8).
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7, =1.c0s90°=1.0=0
7, =1-c0590"=1-0=0 (2.8)
y,=1-c0s0°=1.1=1

See the obtained matrix To: (relationship 2.2).

Transition from the coordinate system x101y1z1 to the coordinate system x.0,y-z, is done
in two distinct phases. The first phase is a translation of the entire system so that (axes being
parallel with them itself) the center O; to move into the center Oz; then the second stage in which
it done the rotation of system of axes, and the center O remains fixed permanently.

The translation of the system from point 1 to the point 2 (see the relationship 2.9) is doing

by the column vector, matrix Ai..

o

1

A12 =1 a, (2.9)

o

On the old O1x1 axis O2 has been moved with d1, on the old axis Olyl O2 has been
moved with a2, and on the old O1z1 axis O2 has not been moved.

The unit vector of the Ox, axis has in rapport of the old system x101y1z1 (translated but
not rotated) the next coordinates (expression 2.10).

a, =1 a,=0;, «,=0 (2.10)

y z

The unit vector of the O.y, axis has in rapport of the old system x;01y1z; (translated in
O2 but not rotated) the next coordinates (expression 2.11).

p.=0, B,=0; p,=1 (2.11)

The unit vector of the Oz, axis has in rapport of the old system x101y1z1 (translated in

O- but not rotated) the coordinates given by the expression 2.12.

The transfer square matrix (the rotation matrix: T12) is writing with relationship 2.13.

o B |t 0o o

T,=|a, B, 7,/=|0 0 -1 (2.13)

a, B, 7, 0 1 OJ

206
ENGEVISTA, V. 19, n.1, p. 202-216, Janeiro 2017.



ISSN: 1415-7314
ISSN online: 2317-6717

Transition from the coordinate system x20.Y-z, to the coordinate system xsOsysz3 is done
in two distinct phases. The first phase is a translation of the entire system so that (axes being
parallel with them itself) the center O, to move into the center Os; then the second stage in which
it done the rotation of system of axes, and the center Oz remains fixed permanently.

First Oz is moving into O3 (axes being parallel with them itself; see the relationship 2.14).

d, - Cos gy
A,;=|d,-sing,, (2.14)

Then Oz remains fixed, and the axes of coordinate system are rotating. The unit vector of
the Osxs axis has in rapport of the coordinate system x,0,y.z, (translated in Oz but not rotated)

the o, coordinates (see expression 2.15):

a,=1 a,=0, « =0 (2.15)

The unit vector of the Osy; axis has in rapport of the coordinate system X»0zy.2;

(translated in Os but not rotated) the B coordinates (see relationship 2.16):

B.=0 p,=L p,=0 (2.16)

The unit vector of the Oszz axis has in rapport of the coordinate system X»0zy.z;

(translated in O3 but not rotated) the y coordinates (see relationship 2.17):

=0 7=0 =1 (2.17)

In the model from the figure 1 the system Xx3Ozysz3 has not been rotated in rapport of the
system x20;y.z, (from 2 to 3 held just a translation). In this case the rotation matrix is the unit

matrix (expression 2.18).
a B | |t 0 0
Tua=la, B, 7,]=|0 1 0 (2.18)

a, B, 7, 0 0 1

The column vector matrix that positions the point M in the coordinate system x3Osysz3 s

written with relation 2.19.
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X3m d, - cos ¢y,
Xawm =| Yam |=|d3-Singy, (2.19)

Z3p 0

Coordinates of the point M in the system (2) x.0,y.z, are obtained by a transformation

matrix which is having the form (2.20):

X2M = A23 +T23' X3M (2.20)

First, is performed the matrix product (relations 2.21):

1 0 0
d, - cos ¢s, d, - cos ¢;,
Tye Xap =| O 1 0| d;-sing,, |=|d,-sing,, (2.21)
o o0 1 0 0

Then, will be calculated Xz (relationship 2.22).

d,-cose,, | |d,-cose;, d, -cos ¢,, +d, - CoS @y,
Xom = Ay +T,5- Xoy =|d,-Sing,, [+]|d;-Sing,, |=|d,-Sing,,+d,-sing;,, (2.22)

-4, 0 -

Coordinates of the point M in the system (1) x101y1z; are obtained by the relationships

(2.23-2.25).
Xim =Ao+T, Xoy (2.23)
! 0 d, - COS @, + d, - COS @, d, - cos ¢,, +d, - CoS @5,
T, Xou=[0 0 —1]-|d,-sing, +d,-singy, = a, (2.24)
0 1 0 —a d, -sin g, +d, -sin g,
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d, ] |dz-COS@y+d;-COSy, d, +d,-cos¢,,+d,-cos g,

Xim = Ao+ T Xy =| 8, |+ ES = a,+a, (2.25)
0 ; ; . .

d, -Sing@,, +d; -sin gy d, -sing,, +d, -sin gy,

Coordinates of the point M in the fixed system xoOqyoZo, are written with the relationships

(2.26-2.27,2.27°,2.28).
XOM = Aol +T01' XlM (2.26)

Cospy,  —Sing, 0 d; +d; -COS gy, +d; - COS g
. 2.27
Tor - Xom =|SiNey, cos¢, O} a, +a, ( )

0 0 1 d, -sing,, +d,-sing,,

(d; +d, -cOS @y, +d, - COS @) - COS oy, — (@, +3,) -SiN gy (227’)
Tor - Xaw =| (d; +d; - COS @y + 5 - COS 03) - SiN @y + (@, +85) - COS @

d, -sing,, +d, -sin @,

Kow = Aoy +To1 - Xy {0 (dy +d; - C0S g + 3 - COS ) - SN oy + (8, +8,) - COS Py | =| (dy + 0, - COS g + 3 - COSPy) -SIN oy + (3, +85) - COS g

4, d, -sing,, +d, - sin @,

07 |(d;+d, co5gy+d; - c0S0y) 008 gy — (8, +25) SNy | | (dy +, - COS gy + - COS 93p) - COS 3 — (2, +5) -SiN g3
+ =
4 a, +d, -sin g, +d, -sin gy,

(2.28)

Xowm is arranged in the form (2.29).

Xu
Xow =| Yu |=
Iy

The same calculations will be presented now by a direct method (having in view the
matrix calculations 2.30).

(2.29)

d, -cos¢p,, —a, -Sing;, +d, - COS @, - COS @y, — @4 - SiN gy + d - COS @y - COS 2y
d, -sing,, +a, - Cos ¢, +d, - COS @, - SiN gy, + @, - COS @y, + d - COS @y, - SiN

a, +d,-sing,,+d,-sing,,

Xow = Aor+Tor- Xow = A+ Tor (A + T Xoy) =

= Ay Tor Ap+Top Tip - X = (2.30)
= A+ Tor A+ Tor T (A + Tyg Xy ) =

= A+ Tor Ap+Tor T Ay + T Tip Tog - Xy

It keeps the relationship (2.30%).

XOM = A)l +T01 ' A12 +T01 'T12 : A23 +T01 'T12 'T23 : XSM (2.30%)
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Now, one performs the matrix multiplications from expression 2.30° (relationships 2.31-

2.35).
cos —sin 0 .
Pio P10 d d, -cos g, —a, -sin gy, (2.31)
Tor- A =|singy, cosg, 0f|a, |=|d;-sing,+a, Ccospy, .
0
0 0 1 0
cosg, -—sing, 0|1 0 0 cosg, O sing,,
_ _ (2.32)
Tor- T, = SiNgy, cosg, 010 0 -1|=|sing, 0 —cosg,
0 0 1|0 1 0 0 1 0
Tor Tip - Ay =
cosg, O sing,, .
d, - C0S @y d, - C0S @y - COS @5y — @3 - SiN @y (2.33)
=|singp, 0 —cosg, |-|d, -sing,, [=|d,: sing,-cose@,, +a,-Ccoseg,,
0 1 0 8, d, -sing,,
Tor T Ty =
cosp, O sing, | |1 0 0| |cose, O sin @,
(2.34)
=|sing, 0 —cose, |-|0 1 O|=|singp, 0 —cosg,
0 1 0 0 0 1] |0 1 0
T01 T12 'T23 ’ X3M -
coseg, O sing,,
d; - Cos @y d; - C0S ¢y, - COS @3, (2.35)
=Ising,, 0 —cose, [-|d;-SiNg,, [=|d;-Sing,, COS@,,
0 l O 0 d3 : Sin (030
The expression (2.30’) takes the form (2.36).
0 d,-cos @, —a,-sing, | |d, cosq,-Cosp,, —a,-sing, 236
Xow =10 |+|d;-sing,+a,-cose, [+|d, sineg,-Cos@,, +a,-cos ¢, |+ ( ' )
G 0 d, -sin @,
d, - cos @, - COS @, Xu d, -cos @, —a, -Sin @, +d, - COS @, - COS @, — 8, - SiN @, + d, - COS @, - COS @y
+|d;-Sing,,-Cos@y [=|Yy |=|d;-sing,+a, cose,+d,-Cos @, -Sin @, +a,-Cos @, +d, - CoS @, - Sin @,
d; -sin g, Zy a, +d, -sin g, +d, -sin @y,
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By the direct kinematics is obtained Cartesian coordinates Xm, Ym, zZm of the point M (the
endeffector) in rapport with the three independent angular displacements @10, @20, (30, Obtained

using actuators (relationships 2.37-2.38).

Xy = F.(000 @200 930)
Yu = fy((0101 Pa0r P30) (2.37)

Zy =t (@0 P00 ©30)

Xy =d,-cosg,,—a,-sing,,+d, -CosSe,, -COS@,, —as, -Sing,, +d, - COS @5, - COS @, ,

Yy =d,-sing,, +a, -cos¢,, +d, -CoS@,, -Sing,, +a, -CoSg,, + d, - CoS @, -Sin @,

z,, =8, +d, -sing,, +d, -sing,,
(2.38)

Calculations are performed with absolute angular movements (1o, ¢®20, ®s0), but the
actuators movements do not match (all) with the independent angular movements. They are
determined as follows (expressions 2.39):

Pro = Pro

N1 Pa1 = P (2.39)

(P32 = P30 — Pao

The first two actuators relative rotations coincide with the independent rotations (used in
calculations), but the third actuator relative rotation is obtained as a difference between two
absolute rotations (expressions 2.39). The velocities and the accelerations are obtained by the

derivatives of the positions expressions (2.38) in rapport of the time.

3. Determining the velocities and the accelerations at the 3r robots (systems)

It starts from the relationship matrix gear (3.1) already known.
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Xow =P+ T Xym = A01+T01'(A12 +T12'x2M):

= A01 +T01 : A12 +To1 'le : XzM = (31)
= A +To Ay +To Ty '(Azs + T Xau )=
= A01 +T01 ' A12 +To1 'le : A23 +T01 'T12 'T23 ! XBM
This is written as (3.2) simplified:
XOM = A01 + Pl + Pz +T03 : X3M (3.2)
Where:
0
Ay =|0 33)
2
d, -cos g, —a, -sin gy,
P, =|d,-sing,+a,-cose, (3.4)
0
d, - COS @y, - COS @, — 8 - SiN @y
P, =|d, -sing,, - COS @,, + &, - COS ¢,,, (3.5)
d, -sin gy
cosg, O sing,,

Tos=[sing, 0 —cosg, (3.6)

0 1 0
X3m d, - cos ¢,
Xaw =| Yam | =] ds-SiNg,, (3.7)
Z3y 0

The Velocities

It derives the relationship (3.2) a matrix and obtain expression (3.8):

XOM = A01 + Pl + P2 +T03 : X3M +T03 : X3M = Pl + P2 +T03 : X3M +T03 : X3M = plZ +T03 : XSM +T03 : XSM

(3.8)
Seeing that:
0 0
A,=|0|=|0]|=0 (3.9)
a 0
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—d;-singyy- @, —a, - Cos gy, -y
R=] d;-COs@y -, —a,-Singy, - w, (3.10)

0

B -

(3.12)

—d, -SiN@y, - @y, - COS Py —d, - COS Py - SIN Py - Wy — 85 COS Py @y
dz COS @y - @y COS Py — dz -sin Pro -sin Pag Wyp — 34 -sin Pro - Wro

d, - COS @y - @y

Tos =
—sing,, - w, 0 COS @, -y,
_ (3.12)
=| COS@Py, -y 0 SIN@yg - g
0 0 0
Xam —d; -singy, -y
Xaw =| Yau |=| d3-C0S@3 - @y (3.13)
Z3y
0
P, = Pl +P, =

—d, Sin @,,@; — &, COS @1, — 85 COS Py, — d,, SN Py, COS P, — d, COS P SIN P, (3.14)
d, COS @, — &, SiN @, 4@, — a3 SiN @@, + d, COS @@, COS P, — d, SIN P, SIN P, 0,

d, COS @,

The following two products is determined: matrix (3.15 and 3.16), from equation (3.8).

—singy, - 0 oS ¢y - :
Pro” o Pio" o d; - cos ¢y —d;-sin gy @, COS @y (3.15)
Tos- Xgu =| COS@,- 0y, 0 Sin@yg-ay, || d3-SiNgy, |=| dy-COS @y, @15 COS 3
0
0 0 0 0
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cos 0 sin . .
o Dol |- d; - SiN @y, - 0y, —d; - COS @y, - SNy - @3 (316)
Toz- Xaw =[SiN@, 0 —COS@y, || g COS@yy - @y | =| — Uy -SiNgy, SN - 0y

0 1 0 0 d; - COS @35 - gy
One can determine now X,,, (system 3.17):
(=d, sin @y, — @, COS @;,,, — 85 COS Py, — d, SIN @@, COS P, —
—d, COS 1, SN 40,5 — d; SiN @,y COS @55 — d; COS @y SIN P305)

(3.17)

Xow =| (d;cospym;, —a, sin ¢,,@,, — 8, Sin @@, +d, COS @@, , COS ¢y —

—d, Sin @, SiN @@, + d; COS @y, COS Y5, — d SIN @), SIN Py5)

(d; COS @005 + d; COS 3523)

The Accelerations

Follow relations accelerations. It derives the relation (3.8) to give the expression (3.18):

X.OM = Ile +-|:03 “Xam +T03 : X3M +T03 : X3M +Tos - XSM = I512 +-|:03 X +2'T03 : X3M +Tos Xsm

(3.18)
P,=R+R=
2 . 2 . 2 2
(=4, cos @,@;, + @, Sin @@, + 85 SiN w7, —d, COS @, COS Py, +
. . . . )
+d, Sin @40, 5IN ,0,, + d, SiN @@, SiN @,00,, — d, €OS @, COS P,u@5,) | (3.19)
=| (-d,sin (/’10(0120 —a, cos (ﬂlowlzo — 8, Cos (/’105‘)120 —d,sin ¢10w120 COS @5y —
—d, COS ;403 SIN @4, — ;€08 9, SN Py, — d SIN @, COS P5,)
(=d,sin ¢7zoa)220)
2 O H 2
—COS @y - @y, SN, - @y,
.. . 2 2 (3.20)
Tos =| —SIN@y, - @y 0 COS @y -
0 0 0

—d; - cos ¢ '0)320
Xau =| =g -8in @y - 5y (3.21)
0
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2-dy-singy, - @y - SIN @4 - 4 |

2Ty, X3M =|—2-d;-C0S @, - @y, -SIN @y, - 5 (3.22)

0 |

—C0S @y, - 2 0 —sing,, - &},

Pro - Wy [ZINLT d3 . COS D50 _ d3 - COS Pio* a’120 - COS [ (323)

Tos Xow = | —Singy,- ol 0 COs gy -l |+| dy-Singy, [=|—d;-sing,- @ - cosgy,
0 0
0 0 0 ]
cos 0 sin
P P |-d 3 " COS @ - a);o —d; -COS @ - COS @y, - a)szo
Tos- Xay, =|sin 0 d,-si 2 |=|—-d,-si . | (3.24)

03 Nam = D10 —COS @y, || —U3-SINQyy - @5 | =| —U5-SINP,;-COS @y - Wy

0 1 0 0 —d3-sin¢)30~a)§0

It obtains the matrix of the endeffector accelerations (3.25) in function of the three

actuators rotations (angular positions and velocities). With @, =ct, w,, =Ct, @,, =cCt.

XOM =

2 : 2 . 2
(=d, €os @07, + @, SiN @], + 8, SiN @@, —
) . .
—d, COS ¢, (@, COS @y + 2d, SIN ;1@ SIN P05 —
) . .
—d,, COS ¢, COS 0,4 + 205 SIN @141, SIN P05 —

~ d; COS ¢, 0, COS 25 — U5 COS ¢, COS 003, (3.25)

(~d, sin @,,0f; — a, c0s g, (wf;, — &, €0S P, —
—d, Sin @@, €08 9, — 2d, COS P4, SIN Py, —
—d, SN @y, €08 0,05, — 2d 1008 ;4,0 SIN 0 —
— d, Sin @, ], C0S 5, — d; SiN 1, C0S 005,

: 2 . 2
(=, Sin @,w5, — d; Sin @y05)

4. Discussion

Kinematics of the anthropomorphic systems with velocities and accelerations, may be
solved by a basic model 3R, which is a spatial model with matrix calculations (which were

presented on this work), or on a 2R planar, simplified model [9].
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5. Conclusions

Kinematics of the serial manipulators and robots can be illustrated by a 3R kinematic
model, a medium difficulty system, ideal for understanding the phenomenon, but also to specify
the basic knowledge necessary for starting calculations for systems simpler and more complex.

The paper presents an original geometrical and kinematic method for the study of
geometry and determining positions of a MP-3R structure. It presents shortly the MP-3R direct
kinematics with positions, velocities and accelerations.

One presents shortly an original method to solve the robot velocities and accelerations at
the 3R-Robots (MP-3R).

If one study (analyze) an anthropomorphic robot with three axes of rotation (which
represents the main movements, absolutely necessary), we already have a base system, on which
one can then add other movements (secondary, additional). Calculations were arranged and in the

matrix form.
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