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Abstract: The paper presents an original method to determine the velocities and the accelerations at the MP-

3R structures. At the 3R structure (spatial) are known (imposed) the angular speeds of actuators and must be 

determined the velocities and the accelerations of the endeffector point M. Starting from the MP-3R direct 

kinematic positions system, deriving these relations system in function of the time, one time and then a second 

time (the second derivation) one obtains first the system velocities, and second time the accelerations of the 

point endeffector M. The system which must be solved has three equations and three independent parameters 

to determine. Constructive basis is represented by a robot with three degrees of freedom (a robot with three 

axes of rotation).  If one study (analyzes) an anthropomorphic robot with three axes of rotation (which 

represents the main movements, absolutely necessary), it already has a base system, on which one can then 

add other movements (secondary, additional). All calculations were arranged and in the matrix form. 
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1. Introduction 
 

Although the anthropomorphic robots, have different structural forms, in recent years 

have been developed especially those with rotating movements, with three or more axis. 

Constructive basis is represented by a robot with three degrees of freedom (a robot with three 

axes of rotation) [1].  If one study (analyze) an anthropomorphic robot with three axes of rotation 

(which represents the main movements, absolutely necessary), we already have a base system, on 

which we can then add other movements (secondary, additional). The base system has three rotary 

axes: a vertical axis (by this axis all the system is rotated, for positioning), and two horizontal 

axes (each making possible a rotation of an arm). Calculations were arranged and in the matrix 

form. 

In direct kinematics are known the kinematic parameters (input parameters) which are the 

absolute rotation angles of the three mobile elements: 10, 20, 30, the rotation angles of the three 

actuators (electric motors, mounted in the rotational kinematic couplings), and the determined 

parameters (the output parameters) are the three absolute coordinates xM, yM, zM of the point M, 

ie kinematic parameters (coordinates) of the endeffector (which can be a hand, to grabbed, a 

soldering tip, painted, cut, etc).  

In inverse kinematics [2-8], one already knows the coordinates xM, yM, zM of the point M, 

and must be determined the independent rotations 302010 ,,   of the three mobile elements, 

based on kinematic parameters imposed to the endeffector xM, yM, zM, known (forced). 

With the independent determined angles, is then to be calculated the relative rotation 

movements, of the three driving motors, from the rotating couplers [7]. 

Considering the positions already determined, it imposes the problem of determining the 

velocities and accelerations of the system. 

 

2. Determining the positions at the 3R robots (systems) 
 

Kinematics of serial manipulators and robots will be illustrated by a 3R kinematic model 

(see Fig. 1), a medium difficulty system, ideal for understanding the phenomenon, but also to 

specify the basic knowledge necessary for starting calculations for systems simpler and more 

complex. 
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Figure 1. Geometry and direct kinematics to a MP-3R 

 

Fixed coordinate system was noted with x0O0y0z0. Mobile systems related to (reinforced 

by) the three mobile elements (1, 2, 3) have indices 1, 2 and 3. Their orientation was chosen 

conveniently. Known kinematic parameters (input parameters in direct kinematics) are absolute 

rotation angles of the three mobile elements: 10, 20, 30, the rotation angles of the three actuators 

(electric motors, mounted in the rotational kinematic couplings). Determined parameters (output 

parameters) are the three absolute coordinates xM, yM, zM of the point M, ie kinematic parameters 

(coordinates) of the endeffector (which can be a hand, to grabbed, a soldering tip, painted, cut, 

etc). 

To begin one writes vector matrix (A01) which change the coordinates of the origin of the 

coordinate system, by linear moving (displacement) from O0 to O1, when the axes remain parallel 

to each other permanently (see Eq. 2.1). 
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Next we write the rotation matrix T01, which rotates system x1O1y1z1 in rapport with the 

system x0O0y0z0 (it is a 3x3 square matrix; see the relationship 2.2). 
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On the first column (which represents the coordinates of the rotated axis O1x1) it writes 

the coordinates of the unit vector of O1x1 in rapport of the old system x0O0y0z0 (translated into O1 

but without rotation; see the relationship 2.3).  
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On the second column of the matrix T01 it writes the coordinates of the unit vector of the 

rotated axis O1y1 in rapport of the old system x0O0y0z0 (translated into O1 but without rotation 

system; see the relationship 2.4). 

    

















z

y

x







             (2.4) 

 

On the third column of the matrix T01 it writes the coordinates of the unit vector of the 

rotated axis O1z1 in rapport of the old system x0O0y0z0 (translated into O1 but without rotation 

system; see the relationship 2.5). 
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In the elected case (figure 1), the unit vector of the rotated axis O1x1,  has in rapport of 

the old system x0O0y0z0, translated into O1 without rotation, the coordinates given by the column 

unit vector (relationship 2.6).  
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The unit vector of the rotated axis O1y1, has in rapport of the old system of axes x0O0y0z0 

(translated into O1 without rotation), coordinates data unit vector column (relationship 2.7). 

 

 

  





















0012/cos1

cos2/sin1

sin2/cos1

1010

1010







z

y

x

  (2.7) 

 

The unit vector of the rotated axis O1z1 has in rapport of the old system of axes x0O0y0z0 

(translated into O1 without rotation), coordinates data unit vector column (relationship 2.8). 
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See the obtained matrix T01 (relationship 2.2). 

Transition from the coordinate system x1O1y1z1 to the coordinate system x2O2y2z2 is done 

in two distinct phases. The first phase is a translation of the entire system so that (axes being 

parallel with them itself) the center O1 to move into the center O2; then the second stage in which 

it done the rotation of system of axes, and the center O remains fixed permanently.  

The translation of the system from point 1 to the point 2 (see the relationship 2.9) is doing 

by the column vector, matrix A12.  
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On the old O1x1 axis O2 has been moved with d1, on the old axis O1y1 O2 has been 

moved with a2, and on the old O1z1 axis O2 has not been moved. 

The unit vector of the O2x2 axis has in rapport of the old system x1O1y1z1 (translated but 

not rotated) the next coordinates (expression 2.10). 

0;0;1  zyx           (2.10) 

 

 

The unit vector of the O2y2 axis has in rapport of the old system x1O1y1z1 (translated in 

O2 but not rotated) the next coordinates (expression 2.11). 

1;0;0  zyx           (2.11) 

 

The unit vector of the O2z2 axis has in rapport of the old system x1O1y1z1 (translated in 

O2 but not rotated) the coordinates given by the expression 2.12. 

0;1;0  zyx           (2.12) 

 

The transfer square matrix (the rotation matrix: T12) is writing with relationship 2.13. 
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Transition from the coordinate system x2O2y2z2 to the coordinate system x3O3y3z3 is done 

in two distinct phases. The first phase is a translation of the entire system so that (axes being 

parallel with them itself) the center O2 to move into the center O3; then the second stage in which 

it done the rotation of system of axes, and the center O3 remains fixed permanently.  

First O2 is moving into O3 (axes being parallel with them itself; see the relationship 2.14). 
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Then O3 remains fixed, and the axes of coordinate system are rotating. The unit vector of 

the O3x3 axis has in rapport of the coordinate system x2O2y2z2 (translated in O3 but not rotated) 

the  coordinates (see expression 2.15): 

 

0;0;1  zyx           (2.15) 

 

The unit vector of the O3y3 axis has in rapport of the coordinate system x2O2y2z2 

(translated in O3 but not rotated) the β coordinates (see relationship 2.16): 

 

0;1;0  zyx           (2.16) 

 

The unit vector of the O3z3 axis has in rapport of the coordinate system x2O2y2z2 

(translated in O3 but not rotated) the  coordinates (see relationship 2.17): 

 

1;0;0  zyx           (2.17) 

 

 

 

In the model from the figure 1 the system x3O3y3z3 has not been rotated in rapport of the 

system x2O2y2z2 (from 2 to 3 held just a translation). In this case the rotation matrix is the unit 

matrix (expression 2.18). 
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The column vector matrix that positions the point M in the coordinate system x3O3y3z3 is 

written with relation 2.19.  
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Coordinates of the point M in the system (2) x2O2y2z2 are obtained by a transformation 

matrix which is having the form (2.20): 

 

MM XTAX 323232            (2.20) 

 

First, is performed the matrix product (relations 2.21): 
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Then, will be calculated X2M (relationship 2.22). 
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Coordinates of the point M in the system (1) x1O1y1z1 are obtained by the relationships 

(2.23-2.25). 

 

MM XTAX 212121            (2.23) 
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Coordinates of the point M in the fixed system x0O0y0z0, are written with the relationships 

(2.26-2.27, 2.27’, 2.28). 

MM XTAX 101010           (2.26) 
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X0M is arranged in the form (2.29).  
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The same calculations will be presented now by a direct method (having in view the 

matrix calculations 2.30). 

 

M

M

M
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XTTTATTATA

XTATTATA

XTTATA

XTATAXTAX

3231201231201120101

323231201120101
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212120101101010

)(

)(









                                             (2.30) 

 

It keeps the relationship (2.30’). 

 

MM XTTTATTATAX 32312012312011201010        (2.30’)                                               
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Now, one performs the matrix multiplications from expression 2.30’ (relationships 2.31-

2.35). 
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
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  (2.33) 
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                (2.35) 

 

The expression (2.30’) takes the form (2.36). 
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By the direct kinematics is obtained Cartesian coordinates xM, yM, zM of the point M (the 

endeffector) in rapport with the three independent angular displacements 10, 20, 30, obtained 

using actuators (relationships 2.37-2.38).  





















),,(

),,(

),,(

302010

302010

302010







zM

yM

xM

fz
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         (2.37) 
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ddaz

dadady

dadadx

M

M

M

       

(2.38) 

 

Calculations are performed with absolute angular movements (10, 20, 30), but the 

actuators movements do not match (all) with the independent angular movements. They are 

determined as follows (expressions 2.39):  





















203032

2021

1010







         (2.39) 

 

The first two actuators relative rotations coincide with the independent rotations (used in 

calculations), but the third actuator relative rotation is obtained as a difference between two 

absolute rotations (expressions 2.39). The velocities and the accelerations are obtained by the 

derivatives of the positions expressions (2.38) in rapport of the time. 

 

3. Determining the velocities and the accelerations at the 3r robots (systems) 
 

It starts from the relationship matrix gear (3.1) already known. 
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M

M

M

MMM

XTTTATTATA

XTATTATA

XTTATA

XTATAXTAX

3231201231201120101

323231201120101

21201120101

212120101101010

)(

)(









                                               (3.1) 

 

This is written as (3.2) simplified: 

 

MM XTPPAX 30321010          (3.2) 

Where: 



















1

01 0

0

a

A              (3.3) 
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P                                     (3.5) 
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M            (3.7) 

The Velocities 

 

It derives the relationship (3.2) a matrix and obtain expression (3.8): 

MMMMMMM XTXTPXTXTPPXTXTPPAX 303303123033032130330321010
   

(3.8) 

Seeing that: 
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The following two products is determined: matrix (3.15 and 3.16), from equation (3.8). 
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One can determine now MX 0
 (system 3.17): 
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The Accelerations 

 

Follow relations accelerations. It derives the relation (3.8) to give the expression (3.18): 
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It obtains the matrix of the endeffector accelerations (3.25) in function of the three 

actuators rotations (angular positions and velocities). With ctctct  302010 ,,  . 



































































)sinsin(

)cossincossin

sincos2cossin

sincos2cossin

coscossin(

)coscoscoscos

sinsin2coscos

sinsin2coscos

sinsincos(

2

30303

2

20202

2

303010330

2

10103

303010103

2

2020102

20201010220

2

10102

2

10103

2

10102

2

10101

2

303010330

2

10103

303010103

2

2020102

20201010220

2

10102

2

10103

2

10102

2

10101

0



















dd

dd

dd

dd

aad

dd

dd

dd

aad

X M


                                             (3.25) 

 

4. Discussion 
 

Kinematics of the anthropomorphic systems with velocities and accelerations, may be 

solved by a basic model 3R, which is a spatial model with matrix calculations (which were 

presented on this work), or on a 2R planar, simplified model [9]. 
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5. Conclusions 
 

Kinematics of the serial manipulators and robots can be illustrated by a 3R kinematic 

model, a medium difficulty system, ideal for understanding the phenomenon, but also to specify 

the basic knowledge necessary for starting calculations for systems simpler and more complex.  

The paper presents an original geometrical and kinematic method for the study of 

geometry and determining positions of a MP-3R structure. It presents shortly the MP-3R direct 

kinematics with positions, velocities and accelerations.  

One presents shortly an original method to solve the robot velocities and accelerations at 

the 3R-Robots (MP-3R).  

If one study (analyze) an anthropomorphic robot with three axes of rotation (which 

represents the main movements, absolutely necessary), we already have a base system, on which 

one can then add other movements (secondary, additional). Calculations were arranged and in the 

matrix form. 
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