CHANGE POINT ESTIMATION IN SEGMENTED REGRESSION MODEL USING RSTAN: AN APPLICATION TO EXERCISE PHYSIOLOGY DATA

Auteurs-es

  • Silvio Cabral Patrício Universidade Federal de Minas Gerais – UFMG
  • Renato Valladares Panaro Universidade Federal de Minas Gerais – UFMG
  • Adriana dos Santos Lima Universidade Federal de Minas Gerais – UFMG
  • Patrícia Viana da Silva Universidade Federal de Minas Gerais – UFMG, Universidade Federal de Uberlândia – UFU

Résumé

Esse trabalho traz uma discussão a respeito do uso de dois métodos de estimação para o modelo de Regressão Segmentada com pontos de mudança desconhecidos. Os parâmetros serão estimados no contexto de inferência Bayesiana e comparados com o modelo frequentista desenvolvido por Muggeo (2003). As abordagens serão aplicadas a dados de fisiologia do exercício em que existe o interesse sobre os pontos de mudança no consumo de oxigênio (VO2) por atletas em função da velocidade na esteira. O desempenho dos métodos é investigado em modelos simulados considerando diferentes quantidades de pontos de mudança.

Téléchargements

Les données de téléchargement ne sont pas encore disponible.

Biographie de l'auteur-e

  • Silvio Cabral Patrício, Universidade Federal de Minas Gerais – UFMG


Téléchargements

Publié

2019-07-02