Caracterização do fresamento frontal do ferro fundido nodular austemperado classe 3 por tensometria por difração de raios – x

Autores

DOI:

https://doi.org/10.22409/engevista.v22i1.65801

Palavras-chave:

ferro fundido nodular austemperado, fresamento, tensões residuais

Resumo

O emprego do ferro fundido nodular austemperado (ADI) em projetos de engenharia tem ganhado bastante notoriedade, em virtude de suas propriedades mecânicas melhoradas, como aumento da resistência mecânica e ao desgaste, decorrente da submissão do ferro fundido nodular ao tratamento térmico de austêmpera. Apesar das propriedades mecânicas melhoradas, a produção de componentes com geometrias específicas ainda não é totalmente dominada. Há escassez de informações sobre a influência das condições de usinagem nas tensões residuais de componentes fabricados deste material. O conhecimento acerca das tensões residuais incidentes após a usinagem pode anteceder falhas do componente em serviço, visto que a incidência das tensões residuais concebe efeitos deletérios quando trativas ou benéficos quando compressivas em componentes usinados. Este trabalho tem por objetivo estudar a relação entre a variação dos parâmetros de corte no fresamento frontal do ADI classe 3 na geração de tensões residuais. O fresamento foi realizado sob análise fatorial de três variáveis em dois níveis. A velocidade de corte foi o parâmetro que mais influenciou as tensões residuais, uma vez que o aumento da velocidade de corte tornou as tensões menos compressivas.

Downloads

Não há dados estatísticos.

Biografia do Autor

Pedro Paulo Rosa de Paula, Universidade Federal Fluminense

Vinculado à Universidade Federal Fluminense - UFF, Departamento de Engenharia Mecânica, Niterói, Rio de Janeiro, Brasil

Lucas Benini, Universidade Federal Fluminense

Vinculado à Universidade Federal Fluminense - UFF, Departamento de Engenharia Mecânica, Niterói, Rio de Janeiro, Brasil

Maria Cindra Fonseca, Universidade Federal Fluminense

Vinculada à Universidade Federal Fluminense - UFF, Departamento de Engenharia Mecânica, Niterói, Rio de Janeiro, Brasil

José Mauro Moraes Júnior, Universidade Federal Fluminense

Vinculado à Universidade Federal Fluminense - UFF, Departamento de Engenharia Mecânica, Niterói, Rio de Janeiro, Brasil

Referências

BARBOSA, P. A. Furação de ferros fundidos austemperados e nodular perlítico. 2009. 124 f. Dissertação (mestrado). Universidade Federal de Uberlândia. Programa de pós graduação em Engenharia Mecânica, Uberlândia, 2009.

BENINI, L. Influência do teor de grãos microcristalinos de Al2O3 em rebolos convencionais na retificação de ADI. 2017. 176 f. Tese (doutorado). Universidade Federal de Santa Catarina. Programa de Pós-graduação em Engenharia Mecânica, UFSC. Florianopolis, 2017.

CAKIR, M.C.; BAYRAM, A.; ISIK, Y.; SALAR, B. The effects of austempering temperature and time onto the machinability of austempered ductile iron. Materials Science and Engineering: A, v. 407, p. 147–153. 2005.

CALLISTER, D.; RETHWISCH, D. Ciência e engenharia de materiais: uma introdução William D. Callister, Jr., David G. Rethwisch ; tradução Sergio Murilo Stamile Soares.- 9. ed. - Rio de Janeiro: LTC, 2016.

DIVE, V.; LAKADE, S. Recent Research Progress on Residual Stress Measurement Using Non-Destructive Testing. Materials Today: Proceedings, v. 47, Part 11, p. 3282-3287, 2021.

GROOVER, M. P. Fundamentos da Moderna Manufatura. vol. 2. GEN: LTC, 5°edição, 2017.

GUNES, B.; KARATOSUN, S.; GUNES, O. Drilling resistance testing combined with SonReb methods for nondestructive estimation of concrete strength. Construction and Building Materials, v. 362, p.129700, 2023.

JAMES, M.N.; HUGHES, D.J.; CHEN, Z.; LOMBARD, H.; HATTINGH, D.G.; ASQUITH, D.; YATES, J. R.; WEBSTER, P. J. Residual stresses and fatigue performance. Engineering Failure Analysis. v. 14, Issue 2, p. 384-395, 2007.

JANG, D.Y.; WATKINS, T.R.; KOZACZEK, K.J.; HUBBARD, C.R.; CAVIN, O.B. Surface residual stresses in machined austenitic stainless steel. Wear, vol. 194, p. 168-173, 1996.

KAJAL, G.; TYAGI, M.R.; KUMAR, G. A review on the effect of residual stresses in incremental sheet metal forming used in automotive and medical sectors. Materials Today: Proceedings, 2022.

KATUKU, K. Regime features of austempered ductile iron cutting. Journal of Manufacturing Processes. v. 83, p. 374-386, 2022.

LACALLE, L.; VALDIVIELSO, L; AMIGO, A.; SASTOQUE, F. Milling with ceramic inserts of austempered ductile iron (ADI): process conditions and performance. Int J Adv Manuf Technol, v.110, p. 899–907, 2020.

LEPPERT, T.; PENG, R. L. Residual stresses in surface layer after dry and MQL turning of AISI 316L steel. Prod. Eng. Res. Devel. vol. 6, p. 367–374, 2012.

LI, Y.; YAO, E.; WANG, P.; SHI, Y. Method of measuring the stress of ferromagnetic materials based on EMAT and magnetic Barkhausen noise characteristic parameters. Journal of Magnetism and Magnetic Materials, v. 562, 169848, 2022.

LODH, A.; THOOL, K.; SAMAJDAR, I. X-ray Diffraction for the Determination of Residual Stress of Crystalline Material: An Overview. Trans Indian Inst Met, v.75, p. 983–995, 2022.

MA, Y.; FENG, P.; ZHANG, J.; WU, Z.; YU, D. Prediction of surface residual stress after end milling based on cutting force and temperature. Journal of Materials Processing Technology, v. 235, p. 41–48, set. 2016.

MARTELL, J. J.; LIU, C. R.; SHI, J. Experimental investigation on variation of machined residual stresses by turning and grinding of hardened AISI 1053 steel. International Journal of Advanced Manufacturing Technology, v. 74, n. 9–12, p. 1381–1392, 2014.

MASMIATI, N.; SARHAN, A. A. D. Optimizing cutting parameters in inclined end milling for minimum surface residual stress – Taguchi approach. Measurement, v. 60, p. 267–275, jan. 2016.

MENDONÇA, L. B. Influência dos Parâmetros de Corte nas Tensões Residuais Geradas no Fresamento do Aço SAE 4340. 2016. 37 f. Projeto final – Centro Federal De Educação Tecnológica Celso Suckow da Fonseca – CEFET/RJ, Rio de Janeiro, 2016.

OUTEIRO, J. C.; DIAS, A. M.; LEBRUN, J. L.; ASTAKHOV, V. P. Machining residual stresses in AISI 316l steel and their correlation with the cutting parameters. Machining Science and Technology, vol. 6:2, p. 251-270, 2002.

RODRÍGUEZ, J.M.; CARBONELL, J.M.; CANTE J.C.; OLIVER, J. Continuous chip formation in metal cutting processes using the Particle Finite Element Method (PFEM). International Journal of Solids and Structures, v. 120, p. 81–102, 2017.

ROSSINI, N.S.; DASSISTI, M.; BENYOUNIS, K.Y.; OLABI, A.G. Methods of measuring residual stresses in components. Materials and Design, v. 35, p. 572–588, 2012.

SADEGHIFAR, M.; JAVIDIKIA, M.; LOUCIF, A.; JAHAZI, M.; SONGMENE, V. Experimental and numerical analyses of residual stress redistributions in large steel dies: Influence of tempering cycles and rough milling. Journal of Materials Research and Technology, vol. 24, p. 395-406, 2023.

SAME, S.A.; KHAN, K.; SMYTH, N.A. Comparison between a predicted and an experimentally measured residual stress field generated by side-punching of API X65 steel. International Journal of Pressure Vessels and Piping, 104943, 2023.

STRODICK, S.; VOGEL, F.; TILGER, M.; DENSTORF, M.; KIPP, M.; BAAK, N.; KUKUI, D.; BIERMANN, D.; BARRIENTOS M. M.; WALTHER, F. Innovative X-ray diffraction and micromagnetic approaches for reliable residual stress assessment in deep rolled and microfinished AISI 4140 components. Journal of Materials Research and Technology, Volume 20, 2022.

WANG, X.; Yuzhou Du, Y.; Liu, C.; Hu, Z.; Li, P.; Gao, Z.; Guo, H.; Jiang, B. Relationship among process parameters, microstructure, and mechanical properties of austempered ductile iron (ADI). Materials Science and Engineering: A, v. 857, 2022.

ZHIJUN, C.; LINGYUN, Q.; RUIKANG C.; JISHENG L.; ZHANG, Q. Machining-induced residual stress analysis and multi-objective optimization for milling process of Mg–Li alloy. Measurement, v. 204,112127, 2022.

Downloads

Publicado

2024-12-23

Edição

Seção

Artigos