Comparativo da análise de desempenho energético em usinas fotovoltaicas de solo com estrutura tracker e fixa

Authors

DOI:

https://doi.org/10.22409/engevista.v22i1.65857

Keywords:

distributed generation, tracker systems, energy efficiency

Abstract

he integration of renewable sources into Brazil's electrical grid, particularly photovoltaic solar energy, has been fundamental in meeting the nation's growing energy demand. Despite being driven by the environmental and economic benefits of solar energy, this transition still faces challenges in consolidating itself as a reliable alternative due to uncertainties and stochastic variables observed in solar resource behavior, directly influenced by meteorological factors. Furthermore, the rapid evolution of technologies in the sector makes it difficult to precisely assess system performance and associated losses. This article proposes solutions to these challenges by analyzing and comparing the energy performance of two plants within the same photovoltaic complex in the interior of the state of Rio de Janeiro, Brazil. These plants have distinct topologies for capturing solar irradiation: one with a fixed structure and monofacial modules, and another with a tracker structure and bifacial modules. Using project data and monthly generation data during the complex's first semester of operation, simulations were conducted using the PVSyst software and compared with field-gathered real data. The results indicated a discreet increase in energy generation, approximately 2% higher when employing the tracker system compared to the fixed structure system. However, considerable gains were observed in photovoltaic conversion efficiency and installation sizing when applying this type of solar tracking technology. This contributes to understanding the performance and efficiency of different technologies in photovoltaic plants, enabling the optimization of future solar energy projects and operations.

Downloads

Download data is not yet available.

Author Biographies

Sandro Roriz Coelho, Universidade Federal Fluminense

Vinculado à Universidade Federal Fluminense - UFF, Programa de Pós-Graduação em Engenharia Elétrica e de Telecomunicações (PPGEET), Niterói, Rio de Janeiro, Brasil.

Beatriz Barbosa Franco Ramos, Universidade Federal Fluminense

Vinculada à Universidade Federal Fluminense - UFF, Programa de Pós-Graduação em Engenharia Elétrica e de Telecomunicações (PPGEET), Niterói, Rio de Janeiro, Brasil.

Márcio Zamboti Fortes, Universidade Federal Fluminense

Vinculado à Universidade Federal Fluminense - UFF, Programa de Pós-Graduação em Engenharia Elétrica e de Telecomunicações (PPGEET), Niterói, Rio de Janeiro, Brasil.

Gustavo de Moraes Azeredo, Universidade Federal Fluminense

Vinculado à Universidade Federal Fluminense - UFF, Mestrado Profissional em Montagem Industrial,
Niterói, Rio de Janeiro, Brasil

References

ASSOCIAÇÃO BRASILEIRA DE ENERGIA SOLAR FOTOVOLTAICA. Energia Solar Fotovoltaica no Brasil, São Paulo, p. 1-1, 24 nov. 2023. Disponível em: http://absolar.org.br/infografico-absolar.html. Acesso em: 24 nov. 2023.

AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA. Superintendência de Concessões e Autorizações de Geração. Sistema de Informações de Geração da ANEEL (SIGA). [S. l.], 2020. Disponível em: https://bityli.com/ObWtP. Acesso em: 22 out 2023.

GLOBAL SOLAR ATLAS. World Bank Group. PV Potencial Maps. s.l. 2023. Disponível em: https://globalsolaratlas.info/download. Acesso em: 27 out 2023.

HOFFMANN, F.; MOLZ, R.; KOTHE, J.; NARA, E.; TEDESCO, L. “Monthly profile analysis based on a two-axis solar tracker proposal for photovoltaic panels.” Renewable Energy, v. 115, p. 750-759, jan. 2018. https://doi.org/10.1016/j.renene.2017.08.079.

INSTITUTO NACIONAL DE METEOROLOGIA. Banco de dados Meteorológicos. S.l. 2023. Disponível em https://bdmep.inmet.gov.br/. Acesso em 22 nov 2023.

IRWAN, Y.M.; AMELIA, A.R.; IRWANTO, M.; FAREQ, M., LEOW, W.Z.; GOMESH, N.; SAFWATI, I. “Stand-Alone Photovoltaic (SAPV) System Assessment using PVSYST Software.” Energy Procedia, v. 79, p. 596-603, nov. 2015. https://doi.org/10.1016/j.egypro.2015.11.539.

MARTINS, G. 2016. Modelagem e Simulação de um Atuador Elétrico Linear. Disponível em: https://www.maxwell.vrac.puc-rio.br/29781/29781.PDF. Acesso em 20 out 2023.

MOREIRA JR., O.; SOUZA, C.C. “Aproveitamento fotovoltaico, análise comparativa entre Brasil e Alemanha.” INTERAÇÕES, Campo Grande, MS, v. 21, n. 2, p. 379-387, abr./jun. 2020. https://doi.org/10.20435/inter.v21i2.1760.

NASCIMENTO, J.; LUCENA, P. 2003. Protocolo Modbus. Disponível em: https://www.dca.ufrn.br/~affonso/FTP/DCA447/trabalho3/trabalho3_13.pdf. Acesso em 21 nov 2023.

SINGH, R.; KUMAR, S.; GEHLOT, A.; PACHAURI, R. “An imperative role of sun trackers in photovoltaic technology: A review.” Renewable and Sustainable Energy Reviews, v. 82(3), p. 3263-3278, fev. 2018. https://doi.org/10.1016/j.rser.2017.10.018

VERMA, B.D.; GOUR, A.; PANDEY, M. “A Review Paper on Solar Tracking System for Photovoltaic Power Plant.” International Journal of Engineering Research & Technology, v. 9(2), fev. 2020.

Published

2024-12-23

Issue

Section

Artigos