IDENTIFICACIÓN DE MASAS DE AGUA EN SERIE TEMPORAL DE RADAR SENTINEL-1
DOI:
https://doi.org/10.22409/GEOgraphia2023.v25i55.a56659Palabras clave:
Imagen Radar, Detección remota, Aprendizaje automático, Google Earth Engine, ÁguaResumen
Este artículo tiene como objetivo abordar el estudio realizado para la identificación y cartografía de cuerpos hídricos en el estado de Río de Janeiro, utilizando técnicas de teledetección multitemporal en imágenes Radar. Esta investigación pretende contribuir metodológicamente al mapeo de cuerpos de agua y humedales, que constituyen coberturas muy específicas y que requieren criterios detallados para su correcta clasificación, debido a su dinámica. Como metodología de investigación se utilizaron algoritmos de aprendizaje de maquina en la plataforma Google Earth Engine, en imágenes Sentinel 1 – banda C para identificar estos objetos. Se utilizó una serie temporal mensual de imágenes de radar, lo que permitió probar su potencial en la identificación de estas coberturas. Como resultado, se obtuvo la clasificación y cuantificación de la cobertura natural del estado de Río de Janeiro, considerando los 12 meses del año 2018. El resultado permitió identificar la espacialidad de los cuerpos de agua, en los diferentes períodos del año, sin interferencia atmosférica, lo que corresponde a un avance metodológico en el intento de mapear la dinámica de crecidas anuales. La validación del mapeo mostró un excelente índice Kappa (0,93), lo que destaca el potencial del uso de imágenes de radar para mapear cuerpos de agua.
Descargas
Citas
ANDRADE, N.; S.; O.; ROSA, A.; N.; C.; FARIA, P.; C.; C. (2007); Fundamentos de Polarimetria SAR. Anais XIII Simpósio Brasileiro de Sensoriamento Remoto, Florianópolis, Brasil, INPE, p. 4775-4782.
BARBOSA, C. C. F.; NOVO, E.M.L.M.; MARTINS, V.S (2019). Introdução ao Sensoriamento Remoto de Sistemas Aquáticos: princípios e aplicações. 1ª edição. Instituto Nacional de Pesquisas Espaciais. São José dos Campos. 161p.
BRASIL (2015). Recomendação CNZU n. º 07, de 11 de junho de 2015. Brasília, DF. 2015. Disponível em: https://antigo.mma.gov.br/comunicacao/item/10872-comit%C3%AA-nacional-de-zonas-%C3%BAmidas.html>. Acessado em: 20 de abril de 2022.
BREIMAN, L (2001). Random Forests. Machine Learning 45, 5–32. Disponível em: https://doi.org/10.1023/A:1010933404324. Acessado em: 14 de novembro de 2023.
BULLOCK, E; OLOFSSON, P. (2018) What is AREA2? Disponível em: https://area2.readthedocs.io/en/latest/overview.html. Acessado em: 14 de novembro de 2023.
CARVALHO, W. S; FILHO, J.C.M; SANTOS, T.L. (2021); Uso e Cobertura do Solo utilizando a Plataforma Google Earth Engine (GEE): Um estudo de caso em uma unidade de conservação. Brazilian Journal of Development, ISSN: 2525-8761.
CERRI, R.; CARVALHO, A. C. P. L. F. (2017). Aprendizado de máquina: breve introdução e aplicações. Cadernos de Ciência & Tecnologia, Brasília, v. 34, n. 3, p. 297-313, set./dez. 2017
CHASMER, L. et al (2020); Remote Sensing of Boreal Wetlands 2: Methods for Evaluating Boreal Wetland Ecosystem State and Drivers of Change. Remote Sensing., 12, 1321.
EUROPEAN SPACE AGENCY (ESA) (2019). Sentinel-1 observation scenario. Disponível em: https://sentinel.esa.int/web/sentinel/missions/sentinel-1/instrument-payload. Acessado em: 14 de novembro de 2023
FERREIRA, K. R et al (2020). E.O Data Cubes for Brazil Requeriments Methodology and Products. Remote Sensing. 12, 4033.
FITZ, Paulo Roberto (2008). Geoprocessamento sem complicação. São Paulo: Oficina de Textos.
GOOGLE, Google Earth Engine (2022). Disponível em: https://earthengine.google.com. Acessado em: 23 de abril de 2022.
GUO, M.; LI, J.; SHENG, C.; XU, J.; WU, L. (2017). A Review of Wetland Remote. Sensors. 17, 777.
INPE (2021). Tutorial do SPRING, Disponível em: http://www.dpi.inpe.br/spring/portugues/tutorial/introducao_geo.html. Acessado em: 23 de jun. de 2021.
JENSEN, JHON R. (2009) Sensoriamento Remoto do Ambiente: uma perspectiva em recursos terrestres. São José dos Campos, SP. 2ª Edição.
JUNIOR, O.; A.; C. (2018) Aplicações e Perspectivas do Sensoriamento Remoto para o Mapeamento De Áreas Inundáveis. Revista de Geografia (Recife) V. 35, No. 4 (especial XII SINAGEO).
KUMAR, L.; MUTANGA, O. (2019). Google Earth Engine Applications. MDPI. Disponível em: https://www.mdpi.com/2072-4292/11/5/591. Acessado em: 14 de nov. de 2023.
MENEZES, P.R.; ALMEIDA, T. (2012). Introdução ao processamento de imagens de Sensoriamento Remoto. 1. Ed. Brasília: CNPq, p. 256.
MAHESH, B. (2020) Machine Learning Algorithms - A Review. International Journal of Science and Research (IJSR). ISSN: 2319-7064. Volume 9 Issue 1, January.
THANH NOI, P.; KAPPAS, Martin. (2018). Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors 18, no. 1: 18.
OLOFSSON, P. et al. (2014) Good practices for estimating area and assessing accuracy of land change. Remote sensing of Environment, v. 148, p. 42-57.
PAIVA, R.; OLIVEIRA, S.; MARTINS, W.; PARENTE, L. (2020) Análise de metacaracterísticas para classificação de uso e cobertura do solo utilizando Random Forest. In: Anais do workshop de computação aplicada à gestão do meio ambiente e recursos naturais (WCAMA). Disponível em: https://sol.sbc.org.br/index.php/wcama/article/view/11021 . Acessado em: 14 de nov. de 2023.
PARADELLA, W.R. et al; (2005) Radares imageadores nas Geociências: estado da arte e perspectivas. Revista Brasileira de Cartografia, v. 57, n. 1, 2005.
PAL, M. (2005). Random forest classifier for remote sensing classification. International Journal of Remote Sensing, 26(1):217–222.
PHAN, T. N.; KUCH, V.; LEHNERT, L. W. (2020) Land Cover Classification using Google Earth Engine and Random Forest Classifier – The Role of Image Composition. Remote Sensing. 12, 2411; doi:10.3390/rs12152411
RABELO, D.R., SANTOS, M.R., SOUSA FILHO, M.R. (2022). Análise comparativa dos dados pluviométricos de satélite e de superfície em bacia hidrográfica semiárida. Revista Brasileira de Sensoriamento Remoto, v.3, n.1, p. 63-75.
SARAIVA, C.; S.; A. (2015) Avaliação do Potencial das Imagens Sentinel-1 para Identificação de Culturas Agrícolas. Universidade de Lisboa. Faculdade de Ciências. Departamento de Engenharia Geográfica, Geofísica e Energia. Dissertação de Mestrado.
SERVELLO, E. L.; SANO, E. E.; PANTOJA, N. V. (2015) Sentinel-1 SAR: efeito de filtros espaciais no estudo do uso do solo amazônico. In: Anais XVII Simpósio Brasileiro de Sensoriamento Remoto - SBSR, João Pessoa-PB, Brasil, INPE.
SECRETARÍA DE LA CONVENCIÓN DE RAMSAR (2013). Manual de la Convención de Ramsar: Guía a la Convención sobre los Humedales (Ramsar, Irán, 1971), 6a. edición. Secretaría de la Convención de Ramsar, Gland (Suiza).
SILVA, F. S., PESTANA, A. L. M. (2020). Mapeamento da cobertura hídrica da microrregião da Baixada Maranhense com dados do sensor SAR Sentinel 1A. Revista Brasileira de Sensoriamento Remoto. v.1, n.2, p.58-71.
VICENS, R. S.; RODRIGUEZ, J. M.; CRONEMBERGER, F. M. (2019) A Paisagem Físico-Geográfica: Representação Cartográfica. Revista Brasileira de Geografia, Rio de Janeiro, v. 64, n. 2, p. 2-17.
##submission.downloads##
Publicado
Cómo citar
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
DECLARAÇÃO DE ORIGINALIDADE E CESSÃO DE DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na revista GEOgraphia, editada pelo Programa de Pós-Graduação em Geografia da Universidade Federal Fluminense, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores a qualquer outro periódico. E declaro estar ciente de que a não observância deste compromisso submeterá o infrator a sanções e penas previstas na Lei de Proteção de Direitos Autorias (Nº9609, de 19/02/98).
O autor concede e transfere, total e gratuitamente, ao Programa de Pós-Graduação em Geografia da Universidade Federal Fluminense em caráter permanente, irrevogável e não exclusivo, todos os direitos autorais patrimoniais não comerciais referentes aos artigos científicos publicados na revista GEOgraphia. Os textos assinados são de responsabilidade dos autores, não representando, necessariamente, a opinião dos editores e dos membros do Conselho Editorial da revista.
Os trabalhos publicados estão simultaneamente licenciados com uma licença Creative Commons - Atribuição 4.0 Internacional.