Bots como agentes de expressão: regime de visibilidades e o poder de criar redes

Autores

  • Lorena Lucas Regattieri Universidade Federal do Rio de Janeiro (UFRJ)

DOI:

https://doi.org/10.22409/contracampo.v38i3.28504

Palavras-chave:

bots, visibilidade, inteligência artificial, análise de redes sociais

Resumo

O que aprendemos a respeito da utilização de robôs nas redes sociais e seus efeitos comunicacionais? Considerando as práticas midiáticas contemporâneas, os estudos críticos algorítmicos vêm debatendo uma transformação nos regimes de visibilidade (Magalhães, 2018). Esse artigo retoma um estudo de caso das eleições presidenciais de 2014 sobre o uso de bots no Twitter como agentes de expressão. Ao coletar dados digitais do Twitter, partiu-se de uma técnica quali-quantitativa de análise das redes sociais para cartografar as estratégias de compuatacionais de propaganda. Assim, sob efeito dos bots, as modulações produzidas da interação entre atores humanos e não humanos fornecem novos parâmetros para compreender fenômenos políticos-comunicacionais.

Downloads

Não há dados estatísticos.

Biografia do Autor

Lorena Lucas Regattieri, Universidade Federal do Rio de Janeiro (UFRJ)

Doutoranda em Comunicação e Cultura - Escola de Comunicação (ECO)

Referências

ALLEN, C.; SMIT, I.; WALLACH, W. Artificial morality: Top-down, bottom-up, and hybrid approaches. Ethics and Information Technology, v. 7, n. 3, p. 149-155, 2005.

ARNAUDO, D. Computational Propaganda in Brazil: Social Bots During Elections. Computational Propaganda Project Working Paper Series, v. 8, 2017.

BASTIAN, M., HEYMANN S., JACOMY, M. Gephi: an open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media, 2009.

BENKLER, Y.; FARIS, R.; ROBERTS, H. Network propaganda: manipulation, disinformation, and radicalization in Amarican Politics. Editora: Oxford University Press, 2018.

BEER, D. The social power of algorithms. In: Information, Communication & Society, v. 20, n.1, 2017, p. 1-13. DOI: 10.1080/1369118X.2016.1216147

BLONDEL, V. et al. Fast unfolding of communities in large networks. In: Journal of Statistical Mechanics: Theory and Experiment: v. 10, 2008.

BRUNO, F.; VAZ, P. Agentes.com: cognição, delegação, distribuição. Contracampo, Rio de Janeiro, v. 7, n.1, p.23-38, 2002.

CHAKRABORTY, A. et al. Who Makes Trends? Understanding Demographic Biases in Crowdsourced Recommendations. In Proceedings of the 11th International AAAI Conference on Web and Social Media (ICWSM), 2017.

CÔRTES, T. et al. O #VemPraRua em dois ciclos: análise e comparação das manifestações no Brasil em 2013 e 2015. Em: Intercom – sociedade Brasileira de estudos interdisciplinares da comunicação, 2016.

CHENG, J., et al. Predicting reciprocity in social networks. In Privacy, Security, Risk and Trust. In: 2011 IEEE Third Inernational Conference on Social Computing (SocialCom), p. 49-56. 2011.

DURANTE, M. Ethics, Law and the Politics of Information A Guide to the Philosophy of Luciano Floridi. The International Library of Ethics, Law and Technology, Springer, 2017.

ESTRADA, M.; MENDOZA, M. Affinity prediction in online social networks. IET Conference Proceedings, Stevenage Nov 10 2014.

FERRARA, E. et al. The rise of social bots. Comm. ACM 59, 2016. p. 96–104.

FERRARA, E. Disinformation and Social Bot Operations in the Run Up to the 2017. French Presidential Election. First Monday 22, 8, 2017

FLORIDI, L. The Logic of Information - A Theory of Philosophy as Conceptual Design. Oxford University Press, 2019.

FORTUNATO, S. Community detection in graphs. Physics Reports 486, 2010. p. 75–174.

FREITAS, C. et al. Reverse engineering socialbot infiltration strategies in twitter. In Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 2015. p. 25-32.

______. Socialbots: Implicações na segurança e na credibilidade de serviços baseados no twitter. Simpøsio Brasileiro de Redes de Computadores e Sistemas Distribuıdos- SBRC, 2014, 2014. p. 603-616.

GUATARRI, F. A Propósito de las Máquinas. In: ¿Que és la Ecosofia?. (Org.) Stéphane Nadaud. Ciudad Antônoma de Buenos Aires: Cactus, 2015.

GILLESPIE, T. #Trendingistrending: When Algorithms Become Culture. Em: Algorithmic Cultures: Essays on Meaning, Performance, and New Technologies. Eds. Robert Seyfert and Jonathan Roberge. London: Routledge, 2017.

HOWARD, P. N.; KOLLANY, B. Bots, #strongerin, and #brexit: Computational propaganda during the UK-EU referendum. Social Science Research Network. 2016.

HOWARD, P.; WOOLEY, S.; CALO, R. Algorithms, bots, and political communication in the US. 2016 election: The challenge of automated political communication for election law and administration. In: Journal Journal of Information Technology & Politics, v. 15, Issue 2, 2018.

JAMIESON, K. H. Cyberwar: how russian hacker and trolls helped elect a president. Editora: HighBridge Audio, 2018.

LEONARD, A. BTS: The origin of New Species. England: Penquin Books, 1997. Tradução nossa.

MAES, P. (Org.). Designing Autonomous Agents, Massachusetts, MIT Press, 1990.

MAGALHÃES, J. C. Do Algorithms Shape Character? Considering Algorithmic Ethical Subjectivation. Social Media + Society, April, 2018. doi:10.1177/2056305118768301.

MALINI, F. Um metodo perspectivista de análisae de redes sociais. (Report of the Grupo de Trabalho Comunicação e Cibercutura). Goiana: Associação Nacional dos Programas de Pós-Graduação em Comunicação, 2016.

MARWICK, A.; LEWIS, R. Media Manipulation and Disinformation Online. Data & Society report, 2018.

MESSIAS, J. et al. White, Man, and Highly Followed: Gender and Race Inequalities in Twitter. In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence (WI), 2017.

NADLER, A; CRAIN, M.; DONOVAM, J. Weaponizing the Digital Influence Machine The Political Perils of Online Ad Tech. Data & Society report, 2018.

PAK, A.; PAROUBEK, P. Twitter as a Corpus for Sentiment Analysis and Opinion Mining. In: LREc. 2010. p. 1320-1326.

PHILLIPS, W.; MILNER, R. The Ambivalent Internet: Mischief, Oddity, and Antagonism Online. Cambridge, UK: Polity Press, 2017.

PHILLIPS, W. The Oxygen of Amplification Better Practices for Reporting on Extremists, Antagonists, and Manipulators. Data & Society report, 2018.

REGATTIERI, L. Guerra de mundos: a estratégia robótica no twitter e as eleições presidenciais de 2014. Dissertação de mestrado, Departamento de Comunicação Social, UFES, 2016.

REGATTIERI, L.L.; MALINI, F.; GOVEIA, F.; HERKENHOFF, G. Marco Civil: Visualizing the Civil Rights Framework for the Internet in Brazil. In: HT (Doctoral Consortium/Late-breaking Results/Workshops), Chile, 2014.

SANGER, D. The Perfect Weapon: war, sabotage, and fear in the cyber age. Crown, 2018.

SAVVOPOULOS, A.; PANTELIS, V.; BENEVENUTO, F. Socialbots’ First Words: Can Automatic Chatting Improve Influence in Twitter?. IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 2018.

SHAO, C. et al. The spread of low-credibility content by social bots. Nature Communications, v.9, Article number: 4787, 2018.

SILVA, L. et al. Analyzing the Targets of Hate in Online Social Media. In Proceedings of the Int'l AAAI Conference on Weblogs and Social (ICWSM’16). Cologne, Germany, 2016.

SHOREY, S.; HOWARD, P. Automation, Big Data, and Politics: A Research Review. In: International Journal of Communication, 10, 2016. p. 5032–5055.

TADDEO, M,; FLORIDI, L. How AI can be a force for good: An ethical framework will help to harness the potential of AI while keeping humans in control. Science. Vol. 361, Issue 6404, pp. 751-752, Aug, 2018. DOI: 10.1126/science.aat5991

TURING, A. Computing Machinery and Intelligence. In: BODEN, Margaret A. (ed.) The philosophy of Artificial Intelligence. Oxford University Press, 1990.

VAROL, O. et al. Online human-bot interactions: detection, estimation, and characterization. In Proc. Intl. AAAI Conf. on Web and Social Media (ICWSM), AAAI, Palo Alto, 2017.

VOSOUGUI, S.; ROY, D.; ARAL, S. The spread of true and false news online. Science 359, 2018. p 1146–1151.

WAGNER, C., et al. When social bots attack: Modeling susceptibility of users in online social networks. Making Sense of Microposts (# MSM2012), 2. 2012.

WOOLEY, S.; KOLLANYI, B,; HOWARD, P. Bots and Automation over Twitter during the U.S. Election. COMPROP DATA MEMO, v. 4, 2016.

Publicado

2019-11-01