Impactos da cafeína no sistema nervoso central

inimiga ou aliada?

Autores/as

  • Bruna Teixeira Silva Universidade Federal Fluminense
  • Ana Gabriela Silva Santos Universidade Federal Fluminense
  • Giovanna Várzea Roberti Monteiro Mattos Universidade Federal Fluminense
  • Paula Campello Costa Lopes Universidade Federal Fluminense

DOI:

https://doi.org/10.22409/nes.v1i2.64378

Palabras clave:

desenvolvimento, neuroplasticidade, cafeína

Resumen

A cafeína é a substância psicoativa mais consumida no mundo e seu consumo está associado às suas propriedades estimulantes, mas seus efeitos variam dependendo da dose e da fase do desenvolvimento. Nessa revisão, iremos abordar os efeitos da ingestão indireta de cafeína nos períodos de gestação e lactação, e os efeitos diretos após consumo na infância, adolescência ou no adulto. O consumo de cafeína no período gestacional pode levar a maior risco de aborto, retardo no crescimento intrauterino, menor peso do recém-nascido, dentre outros efeitos. A ingestão de cafeína durante a lactação, na infância ou na adolescência levam a efeitos a curto e longo prazo, podendo se estender até a fase adulta. Nestes casos, observa-se alterações comportamentais relacionadas a efeitos ansiogênicos com desregulação do eixo hipotálamo-hipófise-adrenal e prejuízos cognitivos. Alterações em proteínas sinápticas e na neurotransmissão GABAérgica também são descritas. Por outro lado, o consumo de cafeína é maior na fase adulta. Trabalhos realizados com modelos animais e com humanos têm demonstrado efeitos positivos do consumo nesta fase, especialmente levando a melhoras cognitivas, aumento de sítios sinápticos tanto em condições normais quanto em doenças neurodegenerativas como o Alzheimer. Em conjunto, estes dados apontam para a importância de alertar a população sobre os possíveis efeitos negativos do consumo de cafeína em etapas precoces do desenvolvimento, mas também trazem a possibilidade de utilizá-la como coadjuvante terapêutico para produzir melhoras cognitivas no adulto, no idoso e em pacientes com déficits cognitivos.

Biografía del autor/a

Bruna Teixeira Silva, Universidade Federal Fluminense

Possui graduação em Biomedicina com habilitação em Pesquisa Científica com ênfase em Fisiologia e Farmacologia pela Universidade Federal Fluminense (2016), mestrado (2017) e doutorado (2022) em Neurociências pelo Programa de Pós-Graduação em Neurociências (PPGN) da Universidade Federal Fluminense. Realizou sua pesquisa no Laboratório de Neuroplasticidade da UFF estudando os efeitos da ingestão de cafeína no desenvolvimento do sistema nervoso central e comportamento animal. Possui experiências nas áreas de plasticidade, desenvolvimento, sistema visual, hipocampo e comportamento.Além disso, participou do Núcleo de Pesquisa, Ensino, Divulgação e Extensão em Neurociências da UFF (NuPEDEN), como subcoordenadora de comunicação social e tecnologia, promovendo atividades de extensão universitária e divulgação científica. Também é idealizadora e organizadora do I Curso de Atualização em Neuroplasticidade da UFF.

Ana Gabriela Silva Santos, Universidade Federal Fluminense

Graduada no curso de Ciências Biológicas (Licenciatura) da Universidade Federal Fluminense. Atualmente, está como aluna de mestrado no programa do programa de pós graduação em Neurociências, na Universidade Federal Fluminense. Sendo vinculada ao Laboratório de Neuroplasticidade, pertencente ao departamento de neurociências da Universidade Federal Fluminense, como bolsista de Capes. Possui experiência na área de Biofísica, com ênfase em Biofísica de Processos e Sistemas, e em divulgação científica, sendo participante de projetos relacionados a divulgação em redes sociais sobre a conscientização em relação as doenças do Sistema Nervoso.

Giovanna Várzea Roberti Monteiro Mattos, Universidade Federal Fluminense

Bacharel em Genética pelo curso de Ciências Biológicas na Universidade Federal do Rio de Janeiro (2023). Participou do projeto Bio Na Praia, que teve como objetivo disseminar o conhecimento científico apreendido na faculdade para o público em geral. Realizou Iniciação Científica no laboratório de Neuroplasticidade da Universidade Federal Fluminense, avaliando os mecanismos celulares e moleculares subjacentes ao consumo de cafeína na plasticidade do sistema nervoso central e no comportamento de ratos. Atualmente, é aluna de Doutorado do Laboratório de Neuroplasticidade do Programa de Pós-Graduação em Neurociências da Universidade Federal Fluminense, no qual avalia os efeitos comportamentais e moleculares do enriquecimento ambiental em animais modelo para ansiedade. 

Paula Campello Costa Lopes, Universidade Federal Fluminense

Possui graduação em Ciências Biológicas pela Universidade Federal do Rio de Janeiro (1994), Mestrado em Ciências Biológicas (Biofísica) pela Universidade Federal do Rio de Janeiro (1997) e Doutorado em Ciências Biológicas (Biofísica) pela Universidade Federal do Rio de Janeiro (2001), Bolsista de produtividade do CNPq nível 2 desde 2010, Foi Jovem Cientista do Nosso Estado no período de 2010_2013 e Coordenadora do Programa de Pós-graduação em Neurociências da Universidade Federal Fluminense de 2018_2022. Atualmente é Professora Titular, Cientista do Nosso Estado (FAPERJ - desde 2019), Membro da Rede Nacional de Ciência para a Educação (Rede CpE) e chefia o Laboratório de Neuroplasticidade vinculado ao Programa de pós-graduação em Neurociências da UFF, onde é orientadora permanente. Tem experiência na área de Biofísica, com ênfase em Neurobiologia, atuando principalmente nos seguintes temas: desenvolvimento, neuroplasticidade, via visual, sistema purinérgico e citocinas. Mais recentemente vem trabalhando com modelos animais de Retinose Pigmentar e Ansiedade. É mãe de 2 meninos e esteve de licença maternidade em 2003 e 2008.

Citas

ABU-SHAWEESH, J. M.; MARTIN, R. J. Caffeine use in the neonatal intensive care unit. Seminars in Fetal and Neonatal Medicine, [s. l.], v. 22, n. 5, p. 342–347, 2017. http://dx.doi.org/10.1016/j.siny.2017.07.011.

ÁGOSTON, C. et al. Why Do You Drink Caffeine? The Development of the Motives for Caffeine Consumption Questionnaire (MCCQ) and Its Relationship with Gender, Age and the Types of Caffeinated Beverages. International journal of mental health and addiction, [s. l.], v. 16, n. 4, p. 981–999, 2018. https://doi.org/10.1007/s11469-017-9822-3.

ARAIN M. et al. Maturation of the adolescent brain. Neuropsychiatr Dis Treat. Apr 2013;9:449-61. doi: 10.2147/NDT.S39776.

ARANDA, J. V; BEHARRY, K. D. Pharmacokinetics, pharmacodynamics and metabolism of caffeine in newborns. Seminars in fetal & neonatal medicine, [s. l.], v. 25, n. 6, p. 101183, 2020. https://doi.org/10.1016/j.siny.2020.101183.

ARDAIS, A. P. et al. Caffeine exposure during rat brain development causes memory impairment in a sex selective manner that is offset by caffeine consumption throughout life. Behavioural Brain Research, [s. l.], v. 303, p. 76–84, 2016. http://dx.doi.org/10.1016/j.bbr.2016.01.026.

ARDAIS, A. P. et al. Caffeine exposure during rat brain development causes memory impairment in a sex selective manner that is offset by caffeine consumption throughout life. Behavioural Brain Research. 2016; 303:76–84. https://doi.org/10.1016/j.bbr.2016.01.026.

ARENDASH, G. W. et al. Caffeine reverses cognitive impairment and decreases brain amyloid-beta levels in aged Alzheimer's disease mice. J Alzheimers Dis, [s. I.], v. 17, n. 3, p. 661 – 680, Jul. 2009. https://doi.org/10.3233/jad-2009-1087.

ARENDASH, G. W., CAO, C. Caffeine and coffee as therapeutics against Alzheimer's disease. J Alzheimers Dis, [s. I.], v. 20, n. s1, p. S117 – S126, Abr. 2010 https://doi.org/10.3233/jad-2010-091249.

BENCE, M.; LEVELT, C. N. Structural plasticity in the developing visual system. Progress in Brain Research, [s. l.], v. 147, n. SPEC. ISS., p. 125–139, 2004. https://doi.org/10.1016/S0079-6123(04)47010-1.

BRANUM, A. M.; ROSSEN, L. M.; SCHOENDORF, K. C. Trends in Caffeine Intake Among US Children and Adolescents. Pediatrics, [s. l.], v. 133, n. 3, p. 386–393, 2014. https://doi.org/10.1542/peds.2013-2877.

BRICE, C. F.; SMITH, A. P. Factors associated with caffeine consumption. International Journal of Food sciences and Nutrition, [s. l.], v. 53, n. 1, p. 55–64, 2002. doi: 10.1080/09637480120057000.

CAMARGO, M. C., TOLEDO, M. C., FARAH, H. G. Caffeine daily intake from dietary sources in Brazil. Food Addit Contam, [s. I.], v. 16, n. 2, p. 79 – 87, Fev. 1999. https://doi.org/10.1080/026520399284244.

CASEY BJ, JONES RM. Neurobiology of the adolescent brain and behavior: implications for substance use disorders. J Am Acad Child Adolesc Psychiatry. 2010 Dec ;49(12):1189-201; quiz 1285. doi: 10.1016/j.jaac.2010.08.017.

CHARLES, B. G. et al. Caffeine citrate treatment for extremely premature infants with apnea: population pharmacokinetics, absolute bioavailability, and implications for therapeutic drug monitoring. Therapeutic drug monitoring, [s. l.], v. 30, p. 709–716, 2008. DOI: 10.1097/FTD.0b013e3181898b6f.

CHEN, L. W. et al. Maternal caffeine intake during pregnancy is associated with risk of low birth weight: A systematic review and dose-response meta-analysis. BMC Medicine, [s. l.], v. 12, n. 1, p. 1–12, 2014. https://doi.org/10.1186/s12916-014-0174-6.

COSTA, M. S., et al. Caffeine improves adult mice performance in the object recognition task and increases BDNF and TrkB independent on phospho-CREB immunocontent in the hippocampus. Neurochemistry International, [s. I.], v. 53, n. 3-4, p. 89 – 94, Set. 2008. https://doi.org/10.1016/j.neuint.2008.06.006.

CRAVENS H. The historical context of G. Stanley Hall's Adolescence (1904). Hist Psychol.;9(3):172-185, 2006 Aug. doi: 10.1037/1093-4510.9.3.172.

CUNHA, R. A., AGOSTINHO, P. M. Chronic caffeine consumption prevents memory disturbance in different animal models of memory decline. J Alzheimers Dis, [s. I.], v. 20, n. s1, p. S95 – S116, Abr. 2010. https://doi.org/10.3233/jad-2010-1408.

DE SANCTIS, V. et al. Caffeinated energy drink consumption among adolescents and potential health consequences associated with their use: a significant public health hazard. Acta bio-medica : Atenei Parmensis, [s. l.], v. 88, n. 2, p. 222–231, 2017. doi: 10.23750/abm.v88i2.6664.

DERBYSHIRE, E.; ABDULA, S. Habitual caffeine intake in women of childbearing age. Journal of Human Nutrition and Dietetics, [s. l.], v. 21, n. 2, p. 159–164, 2008. https://doi.org/10.1111/j.1365-277X.2008.00859.x.

EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2015. Scientific Opinion on the safety of caffeine. EFSA Journal. 2015; 13(5):4102 [120 pp.].

ESKELINEN, M. H. et al. Midlife coffee and tea drinking and the risk of late-life dementia: a population-based CAIDE study. J Alzheimers Dis, [s. I.], v. 16, n. 1, p. 85 – 91, Jan. 2009. https://doi.org/10.3233/jad-2009-0920.

EVE K. CHESIVOIR, JON E. GRANT, Examining the effects of caffeine consumption on the severity of body-focused repetitive behaviors, Psychiatry Research Communications,V 2, Is 4, 2022, 100090, ISSN 2772-5987, https://doi.org/10.1016/j.psycom.2022.100090.

FAZELI, W. et al. Early-life exposure to caffeine affects the construction and activity of cortical networks in mice. Experimental Neurology, [s. l.], v. 295, p. 88–103, 2017. http://dx.doi.org/10.1016/j.expneurol.2017.05.013.

FDA. Spilling the Beans: How Much Caffeine is Too Much? 2023 (https://www.fda.gov/consumers/consumer-updates/spilling-beans-how-much-caffeine-too-much) acessado em: 18/08/2024.

FRARY CD, JOHNSON RK, WANG MQ. Food sources and intakes of caffeine in the diets of persons in the United States. J Am Diet Assoc. 2005 Jan;105(1):110-3. doi: 10.1016/j.jada.2004.10.027.

FRARY, C. D., JOHNSON, R. K., WANG, M. Q. Food sources and intakes of caffeine in the diets of persons in the United States. J Am Diet Assoc, v. 105, n. 1, p. 110 – 113, Jan. 2005. https://doi.org/10.1016/j.jada.2004.10.027.

FREDHOLM, B. B. et al. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacological reviews, [s. l.], v. 51, n. 1, p. 83–133, 1999.

FREDHOLM, B. B. Notes on the history of caffeine use. Handbook of experimental pharmacology, [s. l.], n. 200, p. 1–9, 2011. https://doi.org/10.1007/978-3-642-13443-2_1.

FULGONI III, V. L., KEAST, D. R., LIEBERMAN, H. R. Trends in intake and sources of caffeine in the diets of US adults: 2001-2010. Am J Epidemiol, [s. I.], v. 101, n. 5, p. 1081 – 1087, Mai. 2015. https://doi.org/10.3945/ajcn.113.080077.

GALÉRA, C. et al. Prenatal Caffeine Exposure and Child IQ at Age 5.5 Years: The EDEN Mother-Child Cohort. Biological Psychiatry, [s. l.], v. 80, n. 9, p. 720–726, 2016. http://dx.doi.org/10.1016/j.biopsych.2015.08.034.

GHISLANDI, A. B. et al. Adenosine and NMDA Receptors Modulate Neuroprotection-Induced NMDA Preconditioning in Mice. Journal of molecular neuroscience : MN, [s. l.], v. 70, n. 4, p. 590–599, 2020. https://doi.org/10.1007/s12031-019-01463-0.

GLUCKMAN PD, HANSON MA. Changing times: the evolution of puberty. Mol Cell Endocrinol 2006; 254: 26–31.

GOGTAY N, et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci U S A. 2004 May 25;101(21):8174-9. doi: 10.1073/pnas.0402680101. Epub 2004 May 17. PMID: 15148381; PMCID: PMC419576.

GREENWOOD, D. C. et al. Caffeine intake during pregnancy and adverse birth outcomes: a systematic review and dose–response meta-analysis. European Journal of Epidemiology, [s. l.], v. 29, n. 10, p. 725–734, 2014. https://doi.org/10.1007/s10654-014-9944-x.

HENSCH, T. K.; FAGIOLINI, M. Excitatory-inhibitory balance and critical period plasticity in developing visual cortex. Progress in Brain Research, [s. l.], v. 147, n. SPEC. ISS., p. 115–124, 2004. https://doi.org/10.1016/S0079-6123(04)47009-5.

HERMAN, A.; HERMAN, A. P. Caffeine’s mechanisms of action and its cosmetic use. Skin pharmacology and physiology, [s. l.], v. 26, n. 1, p. 8–14, 2013. https://doi.org/10.1159/000343174.

HOOKS, B. M.; CHEN, C. Critical periods in the visual system: changing views for a model of experience-dependent plasticity. Neuron, [s. l.], v. 56, n. 2, p. 312–326, 2007. https://doi.org/10.1016/j.neuron.2007.10.003.

JAMES, J. E. Maternal caffeine consumption and pregnancy outcomes: a narrative review with implications for advice to mothers and mothers-to-be. BMJ evidence-based medicine, [s. l.], v. 26, n. 3, p. 114–115, 2021. doi: 10.1136/bmjebm-2020-111432.

JENNIFER L. T, Caffeine use in children: What we know, what we have left to learn, and why we should worry, Neuroscience & Biobehavioral Reviews, Volume 33, Issue 62, 2009, Pages 793-806, ISSN 0149-7634, https://doi.org/10.1016/j.neubiorev.2009.01.001.

JOHNSON-KOZLOW, M. et al. Coffee consumption and cognitive function among older adults. Am J Epidemiol, [s. I.], v. 156, n. 9, p. 842 – 850, Nov. 2002. https://doi.org/10.1093/aje/kwf119.

KRISTJANSSON, A. L. et al. Caffeine consumption and onset of alcohol use among early adolescents. Preventive medicine 2022. 163: 107208. doi:10.1016/j.ypmed.2022.107208.

LAUREANO-MELO, R. et al. Behavioral profile assessment in offspring of Swiss mice treated during pregnancy and lactation with caffeine. Metabolic Brain Disease, [s. l.], v. 31, n. 5, p. 1071–1080, 2016. http://dx.doi.org/10.1007/s11011-016-9847-5.

LAZARUS, M. et al. Adenosine and Sleep. Handbook of experimental pharmacology, [s. l.], v. 253, p. 359–381, 2019. https://doi.org/10.1007/164_2017_36.

LI, Y. et al. Prenatal caffeine damaged learning and memory in rat offspring mediated by ARs/PKA/CREB/BDNF pathway. Physiological research, [s. l.], v. 67, n. 6, p. 975–983, 2018. doi: 10.33549/physiolres.933906.

LORENZO, A. M. et al. Maternal caffeine intake during gestation and lactation down-regulates adenosine A1receptor in rat brain from mothers and neonates. Journal of Neuroscience Research, [s. l.], v. 88, n. 6, p. 1252–1261, 2010. https://doi.org/10.1002/jnr.22287.

M. El YACOUBI, et al., “The Stimulant Effects of Caffeine on Locomotor Behaviour in Mice are Mediated through Its Blockade of Adenosine A2A Receptors,” British Journal of Pharmacology, Vol. 129, No. 7, 2000, pp. 1465- 1473. doi:10.1038/sj.bjp.0703170.

MAGENIS, M. L. et al. Behavioral, genetic and biochemical changes in the brain of the offspring of female mice treated with caffeine during pregnancy and lactation. Reproductive toxicology (Elmsford, N.Y.), [s. l.], v. 112, p. 119–135, 2022. https://doi.org/10.1016/j.reprotox.2022.07.005.

MAHDI, S. et al. Effect of chronic administration and withdrawal of caffeine on motor function, cognitive functions, anxiety, and the social behavior of BLC57 mice. International journal of health sciences. 2019; 13(2): 10-16.

MAIA, L., DE MENDONÇA, A. Does caffeine intake protect from Alzheimer's disease? Eur J Neurol, [s. I.], v. 9, n. 4, p. 377 – 382, Jul. 2002. https://doi.org/10.1046/j.1468-1331.2002.00421.x

MANSOUR, B. et al. Energy drinks in children and adolescents: demographic data and immediate effects. European journal of pediatrics, [s. l.], v. 178, n. 5, p. 649–656, 2019. https://doi.org/10.1007/s00431-019-03342-7.

MARTÍNEZ-GALLEGO, I.; RODRÍGUEZ-MORENO, A. Adenosine and Cortical Plasticity. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry, [s. l.], p. 10738584241236772, 2024. https://doi.org/10.1177/10738584241236773.

MIORANZZA, S. et al. Prenatal caffeine intake differently affects synaptic proteins during fetal brain development. International Journal of Developmental Neuroscience, [s. l.], v. 36, p. 45–52, 2014. http://dx.doi.org/10.1016/j.ijdevneu.2014.04.006.

MOSCHINO, L. et al. Caffeine in preterm infants: where are we in 2020?. ERJ open research, [s. l.], v. 6, n. 1, 2020. https://doi.org/10.1183/23120541.00330-2019.

NAMANJEET A. et al. Caffeine Intake from Food and Beverage Sources and Trends among Children and Adolescents in the United States: Review of National Quantitative Studies from 1999 to 2011, Advances in Nutrition, V 6, I s 1, 2015, p 102-111, 2015. https://doi.org/10.3945/an.114.007401.

NARDI AE, ET AL. Panic disorder and social anxiety disorder subtypes in a caffeine challenge test. Psychiatry Res. 2009 Sep 30;169(2):149-53. doi: 10.1016/j.psychres.2008.06.023.

NEHLIG, A. Interindividual Differences in Caffeine Metabolism and Factors Driving Caffeine Consumption. Pharmacological reviews, [s. l.], v. 70, n. 2, p. 384–411, 2018. https://doi.org/10.1124/pr.117.014407

O’NEILL, C. E. et al. Adolescent caffeine consumption increases adulthood anxiety-related behavior and modifies neuroendocrine signaling. Psychoneuroendocrinology, [s. l.], v. 67, p. 40–50, 2016. http://dx.doi.org/10.1016/j.psyneuen.2016.01.030.

O'NEILL CE. et al. Adolescent caffeine consumption increases adulthood anxiety-related behavior and modifies neuroendocrine signaling. Psychoneuroendocrinology, v 67, p 40-50, May.2016. https://doi.org/10.1016/j.psyneuen.2016.01.030.

PREDIGER, R. D. S., BATISTA, L. C., TAKAHASHI, R. N. Caffeine reverses age-related deficits in olfactory discrimination and social recognition memory in rats. Involvement of adenosine A1 and A2A receptors. Neurobiol Aging, [s. I.], v. 26, n. 6, p. 957 – 964, Jun. 2005. https://doi.org/10.1016/j.neurobiolaging.2004.08.012.

PURKIEWICZ, A. et al. Caffeine, Paraxanthine, Theophylline, and Theobromine Content in Human Milk. Nutrients, [s. l.], v. 14, n. 11, 2022. https://doi.org/10.3390/nu14112196.

REEMST, K. et al. The Indispensable Roles of Microglia and Astrocytes during Brain Development. Frontiers in Human Neuroscience, [s. l.], v. 10, n. November, p. 1–28, 2016. https://doi.org/10.3389/fnhum.2016.00566.

ROWE, H.; BAKER, T.; HALE, T. W. Maternal Medication, Drug Use, and Breastfeeding. Child and Adolescent Psychiatric Clinics of North America, [s. l.], v. 24, n. 1, p. 1–20, 2015. http://dx.doi.org/10.1016/j.chc.2014.09.005.

SAMOGGIA, A.; REZZAGHI, T. The consumption of caffeine-containing products to enhance sports performance: an application of an extended model of the theory of planned behavior. Nutrients, [s. l.], v. 13, n. 2, p. 1–18, 2021. https://doi.org/10.3390/nu13020344.

SANTOS, C. et al. Caffeine intake is associated with a lower risk of cognitive decline: a cohort study from Portugal. J Alzheimers Dis, [s. I.], v. 20, n. s1, p. S175 - S185, Abr. 2010. https://doi.org/10.3233/jad-2010-091303.

SAWYER SM. et al. The age of adolescence. Lancet Child Adolesc Health. 2(3):223-228, Mar. 2018. doi: 10.1016/S2352-4642(18)30022-1.

SCHNEIDER, M. Adolescence as a vulnerable period to alter rodent behavior. Cell Tissue Res 354, 99–106 (2013). https://doi.org/10.1007/s00441-013-1581-2 .

SEBASTIÃO, A. M.; RIBEIRO, J. A. Neuromodulation and metamodulation by adenosine: Impact and subtleties upon synaptic plasticity regulation. Brain research, [s. l.], v. 1621, p. 102–113, 2015. https://doi.org/10.1016/j.brainres.2014.11.008.

SEMPLE, B. D. et al. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Progress in Neurobiology, [s. l.], v. 29, n. 6, p. 1–16, 2013. https://doi.org/10.1016/j.pneurobio.2013.04.00.

SERFATY, C. A.; SILVA, P. O.; CAMPELO-COSTA, P. Período Crítico e Plasticidade no Sistema Nervoso Central. Neurociências (Atlântica Editora), [s. l.], v. 4, p. 46–53, 2008.

SILVA, C. G. et al. Adenosine receptor antagonists including caffeine alter fetal brain development in mice. Science Translational Medicine, [s. l.], v. 5, n. 197, 2013. DOI: 10.1126/scitranslmed.3006258.

SOLTANI, S. et al. Maternal caffeine consumption during pregnancy and risk of low birth weight: a dose-response meta-analysis of cohort studies. Critical reviews in food science and nutrition, [s. l.], v. 63, n. 2, p. 224–233, 2023. https://doi.org/10.1080/10408398.2021.1945532.

SOUZA, A. C. et al. Maternal caffeine exposure alters neuromotor development and hippocampus acetylcholinesterase activity in rat offspring. Brain Research, [s. l.], v. 1595, p. 10–18, 2015. http://dx.doi.org/10.1016/j.brainres.2014.10.039.

STILES, J.; JERNIGAN, T. L. The basics of brain development. Neuropsychology Review, [s. l.], v. 20, n. 4, p. 327–348, 2010. https://doi.org/10.1007/s11065-010-9148-4.

SÜDHOF, T. C. Towards an Understanding of Synapse Formation. Neuron, [s. l.], v. 100, n. 2, p. 276–293, 2018. https://doi.org/10.1016/j.neuron.2018.09.040.

TAU, G. Z.; PETERSON, B. S. Normal development of brain circuits. Neuropsychopharmacology, [s. l.], v. 35, n. 1, p. 147–168, 2010. http://dx.doi.org/10.1038/npp.2009.115.

TCHEKALAROVA, J. D.; KUBOVÁ, H.; MARES, P. Different effects of postnatal caffeine treatment on two pentylenetetrazole-induced seizure models persist into adulthood. Pharmacological Reports, [s. l.], v. 65, n. 4, p. 847–853, 2013. https://doi.org/10.1016/S1734-1140(13)71065-X.

TCHEKALAROVA, J.; KUBOVÁ, H.; MAREŠ, P. Effects of early postnatal caffeine exposure on seizure susceptibility of rats are age- and model-dependent. Epilepsy Research, [s. l.], v. 88, n. 2–3, p. 231–238, 2010. https://doi.org/10.1016/j.eplepsyres.2009.11.015.

TEMPLE, J. L. Review: Trends, Safety, and Recommendations for Caffeine Use in Children and Adolescents. Journal of the American Academy of Child and Adolescent Psychiatry, [s. l.], v. 58, n. 1, p. 36–45, 2019. https://doi.org/10.1016/j.jaac.2018.06.030.

THOMSON, B. M. et al. Energy drink consumption and impact on caffeine risk. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, [s. I.], v. 31, n. 9, p. 1476 – 1488, Jul. 2014. https://doi.org/10.1080/19440049.2014.940608.

TRACY, T. S. et al. Temporal changes in drug metabolism (CYP1A2, CYP2D6 and CYP3A Activity) during pregnancy. American Journal of Obstetrics and Gynecology, [s. l.], v. 192, n. 2, p. 633–639, 2005. https://doi.org/10.1016/j.ajog.2004.08.030.

TYRALA, E. E.; DODSON, W. E. Caffeine secretion into breast milk. Archives of Disease in Childhood, [s. l.], v. 54, n. 10, p. 787–800, 1979. https://doi.org/10.1136/adc.54.10.787.

VAN DAM, R. M.; HU, F. B.; WILLETT, W. C. Coffee, Caffeine, and Health. The New England journal of medicine, [s. l.], v. 383, n. 4, p. 369–378, 2020. DOI: 10.1056/NEJMra1816604.

VAN GELDER, B. M. et al. Coffee consumption is inversely associated with cognitive decline in elderly European men: the FINE Study. European Journal of Clinical Nutrition, [s. I.], v. 61, n. 2, p. 226 – 232, Fev. 2007. https://doi.org/10.1038/sj.ejcn.1602495.

VILA-LUNA, S. et al. Chronic caffeine consumption prevents cognitive decline from young to middle age in rats, and is associated with increased length, branching, and spine density of basal dendrites in CA1 hippocampal neurons. Neuroscience, [s. I], v. 202, p. 384 – 395, Jan. 2012. https://doi.org/10.1016/j.neuroscience.2011.11.053 .

VON BERNHARDI, R.; BERNHARDI, L. E.; EUGENÍN, J. What Is Neural Plasticity?. Advances in experimental medicine and biology, [s. l.], v. 1015, p. 1–15, 2017. https://doi.org/10.1007/978-3-319-62817-2_1.

WAHLSTROM D, WHITE T, LUCIANA M. Neurobehavioral evidence for changes in dopamine system activity during adolescence. Neurosci Biobehav Rev. 2010 Apr;34(5):631-48. doi: 10.1016/j.neubiorev.2009.12.007.

WARZAK, W. J. et al., Caffeine Consumption in Young Children, The Journal of Pediatrics, 2011. 158:508-509. https://doi.org/10.1016/j.jpeds.2010.11.022.

WICKHAM, K. A.; SPRIET, L. L. Administration of Caffeine in Alternate Forms. Sports medicine (Auckland, N.Z.), [s. l.], v. 48, n. Suppl 1, p. 79–91, 2018. https://doi.org/10.1007/s40279-017-0848-2

WINSTON AP, HARDWICK E, JABERI N. Neuropsychiatric effects of caffeine. Advances in Psychiatric Treatment. 2005;11(6):432-439. doi:10.1192/apt.11.6.432.

WORKMAN, A. D. et al. Modeling Transformations of Neurodevelopmental Sequences across Mammalian Species. Journal of Neuroscience, [s. l.], v. 33, n. 17, p. 7368–7383, 2013. https://doi.org/10.1523/JNEUROSCI.5746-12.2013.

XU, D. et al. Caffeine-induced activated glucocorticoid metabolism in the hippocampus causes hypothalamic-pituitary-adrenal axis inhibition in fetal rats. PloS one, [s. l.], v. 7, n. 9, p. e44497, 2012. https://doi.org/10.1371/journal.pone.0044497.

XU, D. et al. High expression of hippocampal glutamic acid decarboxylase 67 mediates hypersensitivity of the hypothalamic-pituitary-adrenal axis in response to prenatal caffeine exposure in rats. Toxicology letters, [s. l.], v. 283, p. 39–51, 2018.

https://doi.org/10.1016/j.toxlet.2017.10.019.

ZHANG, H.; LEE, Z. X.; QIU, A. Caffeine intake and cognitive functions in children. Psychopharmacology, [s. l.], v. 237, n. 10, p. 3109–3116, 2020. https://doi.org/10.1007/s00213-020-05596-8

##submission.downloads##

Publicado

2024-09-11

Cómo citar

SILVA, B. T. .; SANTOS, A. G. S. .; MATTOS, G. V. R. M. .; LOPES, P. C. C. . Impactos da cafeína no sistema nervoso central: inimiga ou aliada?. Neurociências & Sociedade, v. 1, n. 2, p. e224003, 11 sep. 2024.

Número

Sección

Artigos de Revisão