Avaliação de Liquens para Biomonitoramento de Impacto Ambiental da Distância de uma Rodovia sobre um Fragmento de Mata Atlântica em Barueri, Estado de São Paulo, Brasil

Autores

  • Caroline Diogo Ishikawa Universidade Federal do ABC (UFABC)
  • Vitor Vieira Vasconcelos Professor na Universidade Federal do ABC (UFABC) https://orcid.org/0000-0002-3063-2776

DOI:

https://doi.org/10.22409/resa2021.v14i1.a40281

Palavras-chave:

líquens, bioindicadores, mata atlântica, poluição, florestas tropicais, grupos morfofuncionais, avaliação rápida de biodiversidade, tráfego, qualidade do ar, saúde

Resumo

Este artigo avalia o impacto do tráfego da Rodovia Castelo Branco sobre líquens epifíticos em um Parque de Mata Atlântica no Município de Barueri, no Brasil. A investigação a avalia como a distância à rodovia influencia a diversidade e a cobertura de tronco de grupos morfofuncionais selecionados de líquens sensíveis. A amostragem e as mensurações foram baseadas no protocolo da União Europeia para biomonitoramento com liquens, adaptado para florestas tropicais. Houve uma relação positiva log-linear positiva (valor-p = 2,5%) entre a distância à rodovia e a diversidade de líquens, apesar que o R2 (0,12) da respectiva regressão foi baixo, provavelmente devido à alta biodiversidade de árvores da Mata Atlântica, que cria um a diversidade de aptidões de ambientes para os liquens. Mapas indicaram que o efeito da proximidade da rodovia sobre a diversidade e cobertura de liquens é mais evidente nos primeiros 100 metros. A maior parte da área do parque contém grupos morfofuncionais que aparentam ser potenciais indicadores de boa qualidade do ar.

Biografia do Autor

Caroline Diogo Ishikawa, Universidade Federal do ABC (UFABC)

Bacharelado em Ciências e Humanidades, Universidade Federal do ABC (UFABC)

Vitor Vieira Vasconcelos, Professor na Universidade Federal do ABC (UFABC)

Professor Adjunto da Universidade Federal do ABC. Pós-doutorado no Stockholm Environment Institute. É doutor em Ciências Naturais com concentração em Geologia Ambiental e Conservação de Recursos Naturais pela Universidade Federal de Ouro Preto, com doutorado-sanduíche em Engenharia de Recursos Hídricos na Universidade de Chulalongkorn (Tailândia). Sua linha de pesquisa principal consiste na modelagem espacial de informações ambientais para avaliação de impactos socioambientais e planejamento de uso do solo. Tem experiência na área de Ciências Ambientais, Ecologia, Computação, Estatística, Direito e Epistemologia atuando principalmente nos seguintes temas: meio ambiente, recursos hídricos, desenvolvimento sustentável. Possui formação como Mestre em Geografia, Especialista em Solos e Meio Ambiente, Licenciatura em Geografia, Bacharel em Ciências Ambientais, Bacharel em Filosofia,Técnico em Meio Ambiente e Técnico em Informática Industrial.

Referências

ARAGÓN, G., BELINCHÓN, R., MARTÍNEZ, I., and PRIETO, M. A survey method for assessing the richness of epiphytic lichens using growth forms, Ecological indicators, Vol. 62, pp. 101-105, 2016 [online] https://doi.org/10.1016/j.ecolind.2015.11.034

ASTA, J., ERHARDT, W., FERRETTI, M., FORNASIER, F., KIRSCHBAUM, U., NIMIS, P. L., et al. Mapping lichen diversity as an indicator of environmental quality’, in NIMIS, P. L., SCHEIDEGGER, C., and WOLSELEY, P. A. (Eds.), Monitoring with Lichens - Monitoring Lichens, Dordrecht: Springer (pp. 273-279), 2002 [online] https://www.researchgate.net/publication/229071390_Monitoring_with_Lichens-Monitoring_Lichens . Accessed 12 February 2018.

BEDELL-STILES, J. The effects of edge and pollution on lichen richness, abundance and distribution in Cañitas, Costa Rica. Report. Eugene, University of Oregon, 2004. [online] http://digital.lib.usf.edu/SFS0001549/00001 (Accessed 19 February 2018)

BENÍTEZ, A., ARAGÓN, G., GONZÁLEZ, Y., and PRIETO, M. (2018). Functional traits of epiphytic lichens in response to forest disturbance and as predictors of total richness and diversity, Ecological Indicators, vol. 86, pp. 18-26, 2018, [online] https://doi.org/10.1016/j.ecolind.2017.12.021

BRAWN, K., and OGDEN III, J. G. (1977). Lichen diversity and abundance as affected by traffic volume in an urban environment. Urban Ecology, vol. 2, n. 3, pp. 235-244, 1977 [online] https://doi.org/10.1016/0304-4009(77)90009-2

CÁCERES, M. E., LÜCKING, R., and RAMBOLD, G. Phorophyte specificity and environmental parameters versus stochasticity as determinants for species composition of corticolous crustose lichen communities in the Atlantic rain forest of northeastern Brazil, Mycological Progress, Vol. 6, No. 3, pp. 117-136, 2007, [online] https://doi.org/10.1007/s11557-007-0532-2

CASANOVAS, P., LYNCH, H. J., and FAGAN, W. F. Using citizen science to estimate lichen diversity, Biological conservation, Vol. 171, pp. 1-8, 2014, [online] https://doi.org/10.1016/j.biocon.2013.12.020

COFFEY, H. M., and FAHRIG, L. Relative effects of vehicle pollution, moisture and colonization sources on urban lichens, Journal of Applied Ecology, Vol. 49, No. 6, pp. 1467-1474, 2012 [online] https://doi.org/10.1111/j.1365-2664.2012.02208.x

CONTI, M. E., and CECCHETTI, G. Biological monitoring: lichens as bioindicators of air pollution assessment - a review, Environmental pollution, Vol. 114, No. 3, pp. 471-492, 2001. [online] https://doi.org/10.1016/S0269-7491(00)00224-4

DUARTE, R. P. S., and PASQUAL, A. Avaliação do cádmio (Cd), chumbo (Pb), níquel (Ni) e zinco (Zn) em solos, plantas e cabelos humanos [Evaluation of cadmium (Cd), lead (Pb), nickel (Ni) and Zinc (Zn) in soils, plants and human hair], Energia na agricultura, Vol. 15, No. 1, pp. 46-58, 2000 [online] http://files.engenharia-ambiental.webnode.com/200000032-7ec0c7fba6/avalia%c3%87%c3%83o%20do%20c%c3%81dmio-chumbo-n%c3%8dquel%20e%20zinco%20em%20solos%20plantas%20e%20cabelos%20humanos.pdf . Accessed 24 June 2018.

DYMYTROVA, L. Epiphytic lichens and bryophytes as indicators of air pollution in Kyiv city (Ukraine), Folia Cryptogamica Estonica, Vol. 46, pp. 33-44, 2009. http://ojs.utlib.ee/index.php/FCE/article/view/13661. Accessed 25 June 2018.

EUROPEAN COMMITTEE FOR STANDARDIZATION (CEN). UNE-EN 16413:2014 - Ambient air- biomonitoring with lichens - assessing epiphytic lichen diversity. ISBN: 9780580777936. Brussels: CEN, 2014

FREY, H. O processo de ocupação do espaço urbano na cidade de Sorocaba e sua região [The process of urban space occupation in the city of Sorocaba and its region], Master dissertation, Unicamp, Campinas, 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/281814. Accessed 19 August 2018.

GIORDANI, P. Is the diversity of epiphytic lichens a reliable indicator of air pollution? A case study from Italy, Environmental Pollution, Vol. 146, No. 2, pp. 317-323, 2007 [online] https://doi.org/10.1016/j.envpol.2006.03.030

GIORDANI, P., BRUNIALTI, G., BENESPERI, R., RIZZI, G., FRATI, L., and MODENESI, P. Rapid biodiversity assessment in lichen diversity surveys: implications for quality assurance, Journal of Environmental Monitoring, Vol. 11, No. 4, pp. 730-735, 2009 [online] https://doi.org/10.1039/B818173J

GIORDANI, P., BRUNIALTI, G., BACARO, G., and NASCIMBENE, J. Functional traits of epiphytic lichens as potential indicators of environmental conditions in forest ecosystems, Ecological Indicators, Vol. 18, pp. 413-420, 2012 [online] https://doi.org/10.1016/j.ecolind.2011.12.006

GIORDANI, P., and BRUNIALTI, G. Sampling and interpreting lichen diversity data for biomonitoring purposes, in UPRETI, D. K., DIVAKAR, P. K., SHUKLA, V., and BAJPAI, R. (Eds.), Recent Advances in Lichenology, Springer, New Delhi, pp. 19-46, 2015, [online] https://doi.org/10.1007/978-81-322-2181-4_2

GRASSMANN, H. Zur Theorie der Farbenmishchung, Poggendorffs Annalen der Physik, Vol. 89, pp. 69-84. English translation: Grassmann, H. (1854). On the theory of compound colours, Philosophical Magazine, Vol. 5, No. 4, pp. 254-264, 1853.

GUPTA, P., CHRISTOPHER, S. A., WANG, J., GEHRIG, R., LEE, Y. C., and KUMAR, N. Satellite remote sensing of particulate matter and air quality assessment over global cities, Atmospheric Environment, Vol. 40, No. 30, pp. 5880-5892, 2006 [online] https://doi.org/10.1016/j.atmosenv.2006.03.016

HAGA, T., AOKI, Y., and NAKABEPPU, O. Study on removal effect of suspended particulate matter by humidity swing air cleaning method, Journal of Thermal Science and Technology, Vol. 11, No. 3, 2016, JTST0038 [online] https://doi.org/10.1299/jtst.2016jtst0038

HAUCK, M., PAUL, A., and SPRIBILLE, T. Uptake and toxicity of manganese in epiphytic cyanolichens, Environmental and Experimental Botany, Vol. 56, No. 2, pp. 216–224, 2006 [online] https://doi.org/10.1016/j.envexpbot.2005.02.005

HAUCK, M., and WIRTH, V. (2010). Preference of lichens for shady habitats is correlated with intolerance to high nitrogen levels, The Lichenologist, Vol. 42, No. 4, pp. 475-484, 2010. https://doi.org/10.1017/S0024282910000046

HURLBERT, S. H. Pseudoreplication and the design of ecological field experiments. Ecological monographs, Vol. 54, No. 2, pp. 187-211, 1984 [online] https://doi.org/10.2307/1942661

IRVING, S. Incidence and abundance of epiphytic and epigeic lichens in response to highway in Algonquin Provincial Park, Ontario, SURG, Vol. 2, No. 1, pp. 47-51, 2008 [online] https://journal.lib.uoguelph.ca/index.php/surg/article/view/801/1203. Accessed 19 February 2018.

LAMIT, L. J., LAU, M. K., NÆSBORG, R. R., WOJTOWICZ, T., WHITHAM, T. G., and GEHRING, C. A. Genotype variation in bark texture drives lichen community assembly across multiple environments, Ecology, Vol. 96, No. 4, pp. 960-971, 2015 [online] https://doi.org/10.1890/14-1007.1

LOVEJOY, T. E., BIERREGAARD, R. O., RYLANDS, A. B., et al. Edge and other effects of isolation on Amazon forest fragments, in SOULE, M. E. (Ed.), Conservation Biology: Science of Diversity, Sinauer, Sunderland, pp. 257-285, 1986.

MARQUES, J. Líquenes – Ribeiro de São Pedro de Moel. Vertigem, Porto, 32 p., 2008 [online] https://saidaslagunadeaveiro.files.wordpress.com/2014/05/marinhagrande_liquenes.pdf . Accessed 6 March 2018.

MATOS, P., GEISER, L., HARDMAN, A., GLAVICH, D., PINHO, P., et al. (2017). Tracking global change using lichen diversity: towards a global‐scale ecological indicator, Methods in Ecology and Evolution, Vol. 8, No. 7, pp. 788-798, 2017.

METEOBLUE. Wind Roses, 2018 [online] https://www.meteoblue.com/pt/tempo/archive/windrose/. Accessed 28 August 2018.

MILLER, J., and FAÇANHA, C. Cost-benefit analysis of Brazil’s heavy-duty emission standards (P-8), ICCT – International Council on Clean Transportation, Washington DC, 2016 [online] https://www.theicct.org/sites/default/files/publications/P-8%20White%20Paper_final.pdf. Accessed 27 June 2018.

NASH III, T. H. Lichen sensitivity to air pollution, in NASH III, T. H. (Ed.), Lichen biology, 2nd edn., Cambridge University Press, Cambridge, pp. 299-314, 2008.

NIEBOER, E., and RICHARDSON, D.H. S. Lichens as monitors of atmospheric deposition, in Eisenreich, S. J. (Ed.), Atmospheric Pollutants in Natural Waters, Ann Arbor Science, Ann Arbor, pp. 339–388, 1981.

NIMIS, P. L., SCHEIDEGGER, C. and WOLSELEY, P. A. Monitoring with lichens - monitoring lichens: an introduction, in NIMIS, P. L., SCHEIDEGGER, C., and WOLSELEY, P. A. (Eds.), Monitoring with Lichens - Monitoring Lichens, Springer, Dordrecht, pp. 1-4, 2002. https://www.researchgate.net/publication/229071390_Monitoring_with_Lichens-Monitoring_Lichens. Accessed 12 February 2018.

SEAWARD, M. R. Environmental role of lichens, in NASH III, T. H. (Ed.), Lichen biology, 2nd edn., Cambridge University Press, Cambridge, pp. 274-298, 2008.

SILVA, M. F. Emissão de metais por veículos automotores e seus efeitos à saúde pública [Emission of heavy metals by motor vehicles and their effects on public health]. Master dissertation, University of São Paulo, São Paulo, 2007 [online] https://doi.org/10.11606/D.6.2007.tde-08112007-152445. Accessed 27 June 2018.

SILVEIRA, M. R. Reestruturação dos sistemas de movimento e da logística e seus impactos regionais e urbanos no território paulista [Reestructuring the systems of transportation and logistics and its regional and urban impacts in São Paulo territory], Scripta Nova, Vol. 14, pp. 331-23, 2010 [online] http://www.ub.es/geocrit/sn/sn-331/sn-331-23.htm. Accessed 19 August 2018.

SPIELMAN, A. A., and MARCELLI, M. P. Fungos Liquenizados, Instituto de Botânica, São Paulo, 2006 [online] http://www.biodiversidade.pgibt.ibot.sp.gov.br/Web/pdf/Fungos_Liquenizados_Spielmann_&_Marcelli.pdf. Accessed 6 March 2018.

STOFER, S., CALATAYUD V., GIORDANI P., and NEVILLE P. Assessment of Epiphytic Lichen diversity, in UNECE ICP Forests Programme Co-ordinating Centre (Ed.), Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests, Thünen Institute of Forest Ecosystems, United Nations Economic Commission for Europe (UNECE), Convention on Long-range Transboundary Air Pollution (CLRTAP), International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests), Eberswalde, Part VII.2, 2016 [online] https://www.icp-forests.org/pdf/manual/2016/Manual_2016_Part_VII-2.pdf. Accessed 12 February 2018.

TULUMELLO, P.M. The use of lichens as indicators of ambient air quality in Southern Ontario. Master dissertation, Brock University, Ontario 2010. http://dr.library.brocku.ca/bitstream/10464/3188/1/Brock_Tulumello_Patricia_2010.pdf. Accessed 19 February 2018.

TICHÝ, L. GLAMA – Gap Light Analysis Mobile App - User Manual. Czech Republic, Masaryk University, Brno, 2015 [online] http://www.sci.muni.cz/botany/glama/GLAMA%20manual.pdf. Accessed 6 March 2018.

TICHÝ, L. Field test of canopy cover estimation by hemispherical photographs taken with a smartphone, Journal of vegetation science, Vol. 27, No. 2, pp. 427-435, 2016. https://doi.org/10.1111/jvs.12350. Accessed 23 August 2018.

US FOREST SERVICE. Field guide – Lichen Communities, Version 5.1, in US Forest Service. Forest Inventory and Analysis National Core Field Guide. Volume II. Phase 3 Field Guide, 2011.

VIANA, C. O. Uso de liquens como biomonitores na avaliação da contribuição de fontes poluidoras [Use of lichens as biomonitors for assessment of pollution sources]. Master dissertation, Federal University of Minas Gerais, Belo Horizonte, 2010 [online] http://www.bdtd.cdtn.br//tde_busca/arquivo.php?codArquivo=120. Accessed 4 March 2018.

Downloads

Publicado

2021-08-30

Como Citar

Ishikawa, C. D., & Vasconcelos, V. V. (2021). Avaliação de Liquens para Biomonitoramento de Impacto Ambiental da Distância de uma Rodovia sobre um Fragmento de Mata Atlântica em Barueri, Estado de São Paulo, Brasil. Ensino, Saude E Ambiente, 14(1), 49-80. https://doi.org/10.22409/resa2021.v14i1.a40281

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)

Obs .: Este plugin requer que pelo menos um plugin de estatísticas / relatório esteja ativado. Se seus plugins de estatísticas fornecerem mais de uma métrica, selecione também uma métrica principal na página de configurações do site do administrador e / ou nas páginas de configurações do gerente da revista.