Autismo

uma visão dos aspectos moleculares e cognitivos

Autores

  • Luana da Silva Chagas Universidade Federal Fluminense
  • Eriane Cerqueira Instituto Oswaldo Cruz. Fundação Oswaldo Cruz

DOI:

https://doi.org/10.22409/nes.v2i2.66501

Palavras-chave:

Autismo, Trasntorno do espectro autista, Desenvolvimento neural, Poda sináptica, Sistema imunológico

Resumo

O autismo é um transtorno do neurodesenvolvimento complexo e heterogêneo, caracterizado por dificuldades na comunicação social e padrões atípicos de respostas sensoriais e motoras. Atualmente, é reconhecido como uma condição relativamente comum, manifestando-se em diferentes graus de severidade – de leve a grave – e exigindo níveis variáveis de suporte conforme as necessidades individuais. Nesta revisão, exploramos os aspectos que tornam o Transtorno do Espectro Autista (TEA) uma condição multifacetada, analisando-o sob a perspectiva do desenvolvimento cerebral e dos processos moleculares que influenciam as habilidades cognitivas destes indivíduos. Essas alterações resultam em padrões variados de comportamento e cognição, o que explica a diversidade de sintomas dentro do espectro. Para entender melhor as manifestações do autismo, é importante considerar as três esferas principais de funcionamento cerebral: percepção, integração e ação. A partir dessa perspectiva, discutimos, a nível molecular, uma série de alterações que afetam o funcionamento cerebral, incluindo fatores genéticos relacionados à disfunção de sinapses, desbalanço de neurotransmissores, perda da função homeostática da micróglia – célula essencial para a poda sináptica – e um conjunto de alterações imunológicas observadas em indivíduos autistas que  também impactam o desenvolvimento neural. Embora a compreensão dos processos biológicos que estão por trás do TEA seja fundamental no avanço de tratamentos, ressaltamos a importância de se validar a individualidade dentro do espectro. Desta forma, criar condições que viabilizem indivíduos autistas a experienciar sua forma única de estar no mundo da forma mais plena possível passa a ser tão relevante quanto a incessante busca por tratamento.

Biografia do Autor

Luana da Silva Chagas, Universidade Federal Fluminense

Neurocientista vinculada à Universidade Federal Fluminense. Tem como principais interesses compreender como fatores ambientais podem afetar a conectividade do nosso cérebro ao longo do desenvolvimento neural e os transtornos associados. Além disso, estuda o papel da neuroinflamação na construção dos circuitos neurais, buscando correlacionar a função imune aos mecanismos de neuroplasticidade. Já realizou divulgação científica por meio de palestras, cursos e produções textuais, Também atuou como subcoordenadora do NuPEDEN, núcleo de pesquisa, ensino, divulgação e extensão da universidade. É fascinada pela ideia de disseminar o conhecimento sobre a importância das neurociências no nosso dia a dia.

Eriane Cerqueira, Instituto Oswaldo Cruz. Fundação Oswaldo Cruz

Bacharel em Ciências Biológicas com habilitação em Biotecnologia  pelo Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ). Atualmente mestranda pelo Programa de Pós-Graduação Stricto Sensu em Biologia Celular e Molecular do Instituto Oswaldo Cruz. Investiga a presença, localização e o papel dos diferentes perfis de linfócitos T no parênquima cerebral durante o desenvolvimento e maturação do sistema nervoso central.  Possuo interesse nas áreas de imunologia, neurociências, biologia molecular e celular. 

Referências

Lord, C., Elsabbagh, M., Baird, G., & Veenstra-Vanderweele, J. (2018). Autism spectrum disorder. Lancet (London, England), 392(10146), 508–520. https://doi.org/10.1016/S0140-6736(18)31129-2

CDC. Clinical Testing and Diagnosis for Autism Spectrum Disorder. 2024 (https://www.cdc.gov/autism/hcp/diagnosis/index.html) acessado em: 31/01/2025

WHO. Autism. 2022 (https://www.who.int/news-room/questions-and-answers/item/autism-spectrum-disorders-(asd)) acessado em: 31/01/2025

Li, Z., Yang, L., Chen, H., Fang, Y., Zhang, T., Yin, X., Man, J., Yang, X., & Lu, M. (2022). Global, regional and national burden of autism spectrum disorder from 1990 to 2019: results from the Global Burden of Disease Study 2019. Epidemiology and psychiatric sciences, 31, e33. https://doi.org/10.1017/S2045796022000178

Gesi, C., Migliarese, G., Torriero, S., Capellazzi, M., Omboni, A. C., Cerveri, G., & Mencacci, C. (2021). Gender Differences in Misdiagnosis and Delayed Diagnosis among Adults with Autism Spectrum Disorder with No Language or Intellectual Disability. Brain sciences, 11(7), 912. https://doi.org/10.3390/brainsci11070912

Wertheimer, O., & Hart, Y. (2024). Autism spectrum disorder variation as a computational trade-off via dynamic range of neuronal population responses. Nature neuroscience, 27(12), 2476–2486. https://doi.org/10.1038/s41593-024-01800-6

Masi, A., DeMayo, M. M., Glozier, N., & Guastella, A. J. (2017). An Overview of Autism Spectrum Disorder, Heterogeneity and Treatment Options. Neuroscience bulletin, 33(2), 183–193. https://doi.org/10.1007/s12264-017-0100-y

Leekam, S. R., Nieto, C., Libby, S. J., Wing, L., & Gould, J. (2007). Describing the sensory abnormalities of children and adults with autism. Journal of autism and developmental disorders, 37(5), 894–910. https://doi.org/10.1007/s10803-006-0218-7

Ben-Sasson, A., Hen, L., Fluss, R., Cermak, S. A., Engel-Yeger, B., & Gal, E. (2009). A meta-analysis of sensory modulation symptoms in individuals with autism spectrum disorders. Journal of autism and developmental disorders, 39(1), 1–11. https://doi.org/10.1007/s10803-008-0593-3

Hazen, E. P., Stornelli, J. L., O'Rourke, J. A., Koesterer, K., & McDougle, C. J. (2014). Sensory symptoms in autism spectrum disorders. Harvard review of psychiatry, 22(2), 112–124. https://doi.org/10.1097/01.HRP.0000445143.08773.58

Volkmar, F. R., & Reichow, B. (2013). Autism in DSM-5: progress and challenges. Molecular autism, 4(1), 13. https://doi.org/10.1186/2040-2392-4-13

Moseley, R. L., & Pulvermüller, F. (2018). What can autism teach us about the role of sensorimotor systems in higher cognition? New clues from studies on language, action semantics, and abstract emotional concept processing. Cortex; a journal devoted to the study of the nervous system and behavior, 100, 149–190. https://doi.org/10.1016/j.cortex.2017.11.019

Bhat A. N. (2021). Motor Impairment Increases in Children With Autism Spectrum Disorder as a Function of Social Communication, Cognitive and Functional Impairment, Repetitive Behavior Severity, and Comorbid Diagnoses: A SPARK Study Report. Autism research : official journal of the International Society for Autism Research, 14(1), 202–219. https://doi.org/10.1002/aur.2453

First M. B. (2013). Diagnostic and statistical manual of mental disorders, 5th edition, and clinical utility. The Journal of nervous and mental disease, 201(9), 727–729. https://doi.org/10.1097/NMD.0b013e3182a2168a

Amaral, D. G., Schumann, C. M., & Nordahl, C. W. (2008). Neuroanatomy of autism. Trends in Neurosciences, 31(3), 137–145. doi:10.1016/j.tins.2007.12.005

Bourgeron T. (2015). From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nature reviews. Neuroscience, 16(9), 551–563. https://doi.org/10.1038/nrn3992

Hong, D., & Iakoucheva, L. M. (2023). Therapeutic strategies for autism: targeting three levels of the central dogma of molecular biology. Translational psychiatry, 13(1), 58. https://doi.org/10.1038/s41398-023-02356-y

State, M. W., & Šestan, N. (2012). Neuroscience. The emerging biology of autism spectrum disorders. Science (New York, N.Y.), 337(6100), 1301–1303. https://doi.org/10.1126/science.1224989

Krumm, N., O'Roak, B. J., Shendure, J., & Eichler, E. E. (2014). A de novo convergence of autism genetics and molecular neuroscience. Trends in neurosciences, 37(2), 95–105. https://doi.org/10.1016/j.tins.2013.11.005

Sestan, N., & State, M. W. (2018). Lost in Translation: Traversing the Complex Path from Genomics to Therapeutics in Autism Spectrum Disorder. Neuron, 100(2), 406–423. https://doi.org/10.1016/j.neuron.2018.10.015

Brueggeman, L., Koomar, T., & Michaelson, J. J. (2020). Forecasting risk gene discovery in autism with machine learning and genome-scale data. Scientific reports, 10(1), 4569. https://doi.org/10.1038/s41598-020-61288-5

Robertson, C. E., Ratai, E. M., & Kanwisher, N. (2016). Reduced GABAergic Action in the Autistic Brain. Current biology: CB, 26(1), 80–85. https://doi.org/10.1016/j.cub.2015.11.019

Fang, W. Q., Chen, W. W., Jiang, L., Liu, K., Yung, W. H., Fu, A. K. Y., & Ip, N. Y. (2014). Overproduction of upper-layer neurons in the neocortex leads to autism-like features in mice. Cell reports, 9(5), 1635–1643. https://doi.org/10.1016/j.celrep.2014.11.003

Berger, M., Gray, J. A., & Roth, B. L. (2009). The expanded biology of serotonin. Annual review of medicine, 60, 355–366. https://doi.org/10.1146/annurev.med.60.042307.110802

Carlsson, A., Corrodi, H., Fuxe, K., & Hökfelt, T. (1969). Effect of antidepressant drugs on the depletion of intraneuronal brain 5-hydroxytryptamine stores caused by 4-methyl-alpha-ethyl-meta-tyramine. European journal of pharmacology, 5(4), 357–366. https://doi.org/10.1016/0014-2999(69)90113-7

Makkonen, I., Riikonen, R., Kokki, H., Airaksinen, M. M., & Kuikka, J. T. (2008). Serotonin and dopamine transporter binding in children with autism determined by SPECT. Developmental medicine and child neurology, 50(8), 593–597. https://doi.org/10.1111/j.1469-8749.2008.03027.x

Andersson, M., Tangen, Ä., Farde, L., Bölte, S., Halldin, C., Borg, J., & Lundberg, J. (2021). Serotonin transporter availability in adults with autism-a positron emission tomography study. Molecular psychiatry, 26(5), 1647–1658. https://doi.org/10.1038/s41380-020-00868-3

Huang, C. H., & Santangelo, S. L. (2008). Autism and serotonin transporter gene polymorphisms: a systematic review and meta-analysis. American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics, 147B(6), 903–913. https://doi.org/10.1002/ajmg.b.30720

Nakamura, K., Sekine, Y., Ouchi, Y., Tsujii, M., Yoshikawa, E., Futatsubashi, M., Tsuchiya, K. J., Sugihara, G., Iwata, Y., Suzuki, K., Matsuzaki, H., Suda, S., Sugiyama, T., Takei, N., & Mori, N. (2010). Brain serotonin and dopamine transporter bindings in adults with high-functioning autism. Archives of general psychiatry, 67(1), 59–68. https://doi.org/10.1001/archgenpsychiatry.2009.137

Ronan, J. L., Wu, W., & Crabtree, G. R. (2013). From neural development to cognition: unexpected roles for chromatin. Nature reviews. Genetics, 14(5), 347–359. https://doi.org/10.1038/nrg3413

Hutsler, J. J., & Zhang, H. (2010). Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain research, 1309, 83–94. https://doi.org/10.1016/j.brainres.2009.09.120

Belmonte, M. K., Allen, G., Beckel-Mitchener, A., Boulanger, L. M., Carper, R. A., & Webb, S. J. (2004). Autism and abnormal development of brain connectivity. The Journal of neuroscience : the official journal of the Society for Neuroscience, 24(42), 9228–9231. https://doi.org/10.1523/JNEUROSCI.3340-04.200

Ginhoux, F., Lim, S., Hoeffel, G., Low, D., & Huber, T. (2013). Origin and differentiation of microglia. Frontiers in cellular neuroscience, 7, 45. https://doi.org/10.3389/fncel.2013.00045

Chagas, L. D. S., & Serfaty, C. A. (2024). The Influence of Microglia on Neuroplasticity and Long-Term Cognitive Sequelae in Long COVID: Impacts on Brain Development and Beyond. International journal of molecular sciences, 25(7), 3819. https://doi.org/10.3390/ijms25073819

Chagas, L. D. S., Sandre, P. C., Ribeiro E Ribeiro, N. C. A., Marcondes, H., Oliveira Silva, P., Savino, W., & Serfaty, C. A. (2020). Environmental Signals on Microglial Function during Brain Development, Neuroplasticity, and Disease. International journal of molecular sciences, 21(6), 2111. https://doi.org/10.3390/ijms21062111

Dayananda K.K., Ahmed S., Wang D., Polis B., Islam R., Kaffman A. Early life stress impairs synaptic pruning in the developing hippocampus. Brain Behav. Immun. 2023;107:16–31. doi: 10.1016/j.bbi.2022.09.014

Ren J., Yan Y., Cheng S., Long J., Zhang H., Wang J., Shen Y., Zhou Y.D., Anderson M.P. Maternal immune activation alters visual acuity and retinogeniculate axon pruning in offspring mice. Brain Behav. Immun. 2020;89:518–523. doi: 10.1016/j.bbi.2020.08.017

Schaafsma W., Basterra L.B., Jacobs S., Brouwer N., Meerlo P., Schaafsma A., Boddeke E., Eggen B.J.L. Maternal inflammation induces immune activation of fetal microglia and leads to disrupted microglia immune responses, behavior, and learning performance in adulthood. Neurobiol. Dis. 2017;106:291–300. doi: 10.1016/j.nbd.2017.07.017

Spann M.N., Sourander A., Surcel H.M., Hinkka-Yli-Salomaki S., Brown A.S. Prenatal toxoplasmosis antibody and childhood autism. Autism. Res. 2017;10:769–777. doi: 10.1002/aur.1722.

de Fernandez Cossio L., Guzman A., van der Veldt S., Luheshi G.N. Prenatal infection leads to ASD-like behavior and altered synaptic pruning in the mouse offspring. Brain Behav. Immun. 2017;63:88–98. doi: 10.1016/j.bbi.2016.09.028

Filipello F., Morini R., Corradini I., Zerbi V., Canzi A., Michalski B., Erreni M., Markicevic M., Starvaggi-Cucuzza C., Otero K., et al. The Microglial Innate Immune Receptor TREM2 Is Required for Synapse Elimination and Normal Brain Connectivity. Immunity. 2018;48:979–991. e8. doi: 10.1016/j.immuni.2018.04.016.

Xie, L., Choudhury, G. R., Winters, A., Yang, S. H., & Jin, K. (2015). Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10. European journal of immunology, 45(1), 180–191. https://doi.org/10.1002/eji.201444823

Ellwardt, E., Walsh, J. T., Kipnis, J., & Zipp, F. (2016). Understanding the Role of T Cells in CNS Homeostasis. Trends in immunology, 37(2), 154–165. https://doi.org/10.1016/j.it.2015.12.008

Stichel, C. C., & Luebbert, H. (2007). Inflammatory processes in the aging mouse brain: participation of dendritic cells and T-cells. Neurobiology of aging, 28(10), 1507–1521. https://doi.org/10.1016/j.neurobiolaging.2006.07.022

Verkhratsky, A., Rodríguez, J. J., & Parpura, V. (2014). Neuroglia in ageing and disease. Cell and tissue research, 357(2), 493–503. https://doi.org/10.1007/s00441-014-1814-z

Ellul, P., Rosenzwajg, M., Peyre, H., Fourcade, G., Mariotti-Ferrandiz, E., Trebossen, V., Klatzmann, D., & Delorme, R. (2021). Regulatory T lymphocytes/Th17 lymphocytes imbalance in autism spectrum disorders: evidence from a meta-analysis. Molecular autism, 12(1), 68. https://doi.org/10.1186/s13229-021-00472-4

Ribeiro, M., Brigas, H. C., Temido-Ferreira, M., Pousinha, P. A., Regen, T., Santa, C., Coelho, J. E., Marques-Morgado, I., Valente, C. A., Omenetti, S., Stockinger, B., Waisman, A., Manadas, B., Lopes, L. V., Silva-Santos, B., & Ribot, J. C. (2019). Meningeal γδ T cell-derived IL-17 controls synaptic plasticity and short-term memory. Science immunology, 4(40), eaay5199. https://doi.org/10.1126/sciimmunol.aay5199

Hughes, H. K., R J Moreno, & Ashwood, P. (2023). Innate immune dysfunction and neuroinflammation in autism spectrum disorder (ASD). Brain, behavior, and immunity, 108, 245–254. https://doi.org/10.1016/j.bbi.2022.12.001

Erbescu, A., Papuc, S. M., Budisteanu, M., Arghir, A., & Neagu, M. (2022). Re-emerging concepts of immune dysregulation in autism spectrum disorders. Frontiers in psychiatry, 13, 1006612. https://doi.org/10.3389/fpsyt.2022.1006612

Alves de Lima, K., Rustenhoven, J., Da Mesquita, S., Wall, M., Salvador, A. F., Smirnov, I., Martelossi Cebinelli, G., Mamuladze, T., Baker, W., Papadopoulos, Z., Lopes, M. B., Cao, W. S., Xie, X. S., Herz, J., & Kipnis, J. (2020). Meningeal γδ T cells regulate anxiety-like behavior via IL-17a signaling in neurons. Nature immunology, 21(11), 1421–1429. https://doi.org/10.1038/s41590-020-0776-4

Filiano, A. J., Xu, Y., Tustison, N. J., Marsh, R. L., Baker, W., Smirnov, I., Overall, C. C., Gadani, S. P., Turner, S. D., Weng, Z., Peerzade, S. N., Chen, H., Lee, K. S., Scott, M. M., Beenhakker, M. P., Litvak, V., & Kipnis, J. (2016). Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature, 535(7612), 425–429. https://doi.org/10.1038/nature18626

Li, X., Chauhan, A., Sheikh, A. M., Patil, S., Chauhan, V., Li, X. M., Ji, L., Brown, T., & Malik, M. (2009). Elevated immune response in the brain of autistic patients. Journal of neuroimmunology, 207(1-2), 111–116. https://doi.org/10.1016/j.jneuroim.2008.12.002

Ashwood, P., Krakowiak, P., Hertz-Picciotto, I., Hansen, R., Pessah, I., & Van de Water, J. (2011). Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain, behavior, and immunity, 25(1), 40–45. https://doi.org/10.1016/j.bbi.2010.08.003

Nadeem, A., Ahmad, S. F., Al-Harbi, N. O., Al-Ayadhi, L. Y., Sarawi, W., Attia, S. M., Bakheet, S. A., Alqarni, S. A., Ali, N., & AsSobeai, H. M. (2022). Imbalance in proinflammatory and anti-inflammatory cytokines milieu in B cells of children with autism. Molecular immunology, 141, 297–304. https://doi.org/10.1016/j.molimm.2021.12.009

Hughes, H. K., R J Moreno, & Ashwood, P. (2023). Innate immune dysfunction and neuroinflammation in autism spectrum disorder (ASD). Brain, behavior, and immunity, 108, 245–254. https://doi.org/10.1016/j.bbi.2022.12.001

Noori, A. S., Rajabi, P., Sargolzaei, J., & Alaghmand, A. (2024). Correlation of biochemical markers and inflammatory cytokines in autism spectrum disorder (ASD). BMC pediatrics, 24(1), 696. https://doi.org/10.1186/s12887-024-05182-3

Che, X., Hornig, M., Bresnahan, M., Stoltenberg, C., Magnus, P., Surén, P., Mjaaland, S., Reichborn-Kjennerud, T., Susser, E., & Lipkin, W. I. (2022). Maternal mid-gestational and child cord blood immune signatures are strongly associated with offspring risk of ASD. Molecular psychiatry, 27(3), 1527–1541. https://doi.org/10.1038/s41380-021-01415-4

Gottfried, C., Bambini-Junior, V., Francis, F., Riesgo, R., & Savino, W. (2015). The Impact of Neuroimmune Alterations in Autism Spectrum Disorder. Frontiers in psychiatry, 6, 121. https://doi.org/10.3389/fpsyt.2015.00121

Meltzer, A., & Van de Water, J. (2017). The Role of the Immune System in Autism Spectrum Disorder. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 42(1), 284–298. https://doi.org/10.1038/npp.2016.158

Rotulo, G. A., & Palma, P. (2023). Understanding COVID-19 in children: immune determinants and post-infection conditions. Pediatric research, 94(2), 434–442. https://doi.org/10.1038/s41390-023-02549-7

Pasciuto, E., Burton, O. T., Roca, C. P., Lagou, V., Rajan, W. D., Theys, T., Mancuso, R., Tito, R. Y., Kouser, L., Callaerts-Vegh, Z., de la Fuente, A. G., Prezzemolo, T., Mascali, L. G., Brajic, A., Whyte, C. E., Yshii, L., Martinez-Muriana, A., Naughton, M., Young, A., Moudra, A., … Liston, A. (2020). Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell, 182(3), 625–640.e24. https://doi.org/10.1016/j.cell.2020.06.026

da Silva Chagas, L., Sandre, P. C., de Velasco, P. C., Marcondes, H., Ribeiro E Ribeiro, N. C. A., Barreto, A. L., Alves Mauro, L. B., Ferreira, J. H., & Serfaty, C. A. (2021). Neuroinflammation and Brain Development: Possible Risk Factors in COVID-19-Infected Children. Neuroimmunomodulation, 28(1), 22–28. https://doi.org/10.1159/000512815

Randolph-Gips, M., & Srinivasan, P. (2012). Modeling autism: a systems biology approach. Journal of clinical bioinformatics, 2(1), 17. https://doi.org/10.1186/2043-9113-2-17

Ludyga, S., Pühse, U., Gerber, M., & Mücke, M. (2021). Muscle strength and executive function in children and adolescents with autism spectrum disorder. Autism research : official journal of the International Society for Autism Research, 14(12), 2555–2563. https://doi.org/10.1002/aur.2587

Hahamy, A., Behrmann, M., & Malach, R. (2015). The idiosyncratic brain: distortion of spontaneous connectivity patterns in autism spectrum disorder. Nature neuroscience, 18(2), 302–309. https://doi.org/10.1038/nn.3919

Downloads

Publicado

2025-04-16

Como Citar

CHAGAS, L. DA S. .; CERQUEIRA, E. Autismo: uma visão dos aspectos moleculares e cognitivos. Neurociências & Sociedade, v. 2, n. 2, p. e225001, 16 abr. 2025.

Edição

Seção

Artigos de Revisão