Autismo
uma visão dos aspectos moleculares e cognitivos
DOI:
https://doi.org/10.22409/nes.v2i2.66501Palavras-chave:
Autismo, Trasntorno do espectro autista, Desenvolvimento neural, Poda sináptica, Sistema imunológicoResumo
O autismo é um transtorno do neurodesenvolvimento complexo e heterogêneo, caracterizado por dificuldades na comunicação social e padrões atípicos de respostas sensoriais e motoras. Atualmente, é reconhecido como uma condição relativamente comum, manifestando-se em diferentes graus de severidade – de leve a grave – e exigindo níveis variáveis de suporte conforme as necessidades individuais. Nesta revisão, exploramos os aspectos que tornam o Transtorno do Espectro Autista (TEA) uma condição multifacetada, analisando-o sob a perspectiva do desenvolvimento cerebral e dos processos moleculares que influenciam as habilidades cognitivas destes indivíduos. Essas alterações resultam em padrões variados de comportamento e cognição, o que explica a diversidade de sintomas dentro do espectro. Para entender melhor as manifestações do autismo, é importante considerar as três esferas principais de funcionamento cerebral: percepção, integração e ação. A partir dessa perspectiva, discutimos, a nível molecular, uma série de alterações que afetam o funcionamento cerebral, incluindo fatores genéticos relacionados à disfunção de sinapses, desbalanço de neurotransmissores, perda da função homeostática da micróglia – célula essencial para a poda sináptica – e um conjunto de alterações imunológicas observadas em indivíduos autistas que também impactam o desenvolvimento neural. Embora a compreensão dos processos biológicos que estão por trás do TEA seja fundamental no avanço de tratamentos, ressaltamos a importância de se validar a individualidade dentro do espectro. Desta forma, criar condições que viabilizem indivíduos autistas a experienciar sua forma única de estar no mundo da forma mais plena possível passa a ser tão relevante quanto a incessante busca por tratamento.
Referências
Lord, C., Elsabbagh, M., Baird, G., & Veenstra-Vanderweele, J. (2018). Autism spectrum disorder. Lancet (London, England), 392(10146), 508–520. https://doi.org/10.1016/S0140-6736(18)31129-2
CDC. Clinical Testing and Diagnosis for Autism Spectrum Disorder. 2024 (https://www.cdc.gov/autism/hcp/diagnosis/index.html) acessado em: 31/01/2025
WHO. Autism. 2022 (https://www.who.int/news-room/questions-and-answers/item/autism-spectrum-disorders-(asd)) acessado em: 31/01/2025
Li, Z., Yang, L., Chen, H., Fang, Y., Zhang, T., Yin, X., Man, J., Yang, X., & Lu, M. (2022). Global, regional and national burden of autism spectrum disorder from 1990 to 2019: results from the Global Burden of Disease Study 2019. Epidemiology and psychiatric sciences, 31, e33. https://doi.org/10.1017/S2045796022000178
Gesi, C., Migliarese, G., Torriero, S., Capellazzi, M., Omboni, A. C., Cerveri, G., & Mencacci, C. (2021). Gender Differences in Misdiagnosis and Delayed Diagnosis among Adults with Autism Spectrum Disorder with No Language or Intellectual Disability. Brain sciences, 11(7), 912. https://doi.org/10.3390/brainsci11070912
Wertheimer, O., & Hart, Y. (2024). Autism spectrum disorder variation as a computational trade-off via dynamic range of neuronal population responses. Nature neuroscience, 27(12), 2476–2486. https://doi.org/10.1038/s41593-024-01800-6
Masi, A., DeMayo, M. M., Glozier, N., & Guastella, A. J. (2017). An Overview of Autism Spectrum Disorder, Heterogeneity and Treatment Options. Neuroscience bulletin, 33(2), 183–193. https://doi.org/10.1007/s12264-017-0100-y
Leekam, S. R., Nieto, C., Libby, S. J., Wing, L., & Gould, J. (2007). Describing the sensory abnormalities of children and adults with autism. Journal of autism and developmental disorders, 37(5), 894–910. https://doi.org/10.1007/s10803-006-0218-7
Ben-Sasson, A., Hen, L., Fluss, R., Cermak, S. A., Engel-Yeger, B., & Gal, E. (2009). A meta-analysis of sensory modulation symptoms in individuals with autism spectrum disorders. Journal of autism and developmental disorders, 39(1), 1–11. https://doi.org/10.1007/s10803-008-0593-3
Hazen, E. P., Stornelli, J. L., O'Rourke, J. A., Koesterer, K., & McDougle, C. J. (2014). Sensory symptoms in autism spectrum disorders. Harvard review of psychiatry, 22(2), 112–124. https://doi.org/10.1097/01.HRP.0000445143.08773.58
Volkmar, F. R., & Reichow, B. (2013). Autism in DSM-5: progress and challenges. Molecular autism, 4(1), 13. https://doi.org/10.1186/2040-2392-4-13
Moseley, R. L., & Pulvermüller, F. (2018). What can autism teach us about the role of sensorimotor systems in higher cognition? New clues from studies on language, action semantics, and abstract emotional concept processing. Cortex; a journal devoted to the study of the nervous system and behavior, 100, 149–190. https://doi.org/10.1016/j.cortex.2017.11.019
Bhat A. N. (2021). Motor Impairment Increases in Children With Autism Spectrum Disorder as a Function of Social Communication, Cognitive and Functional Impairment, Repetitive Behavior Severity, and Comorbid Diagnoses: A SPARK Study Report. Autism research : official journal of the International Society for Autism Research, 14(1), 202–219. https://doi.org/10.1002/aur.2453
First M. B. (2013). Diagnostic and statistical manual of mental disorders, 5th edition, and clinical utility. The Journal of nervous and mental disease, 201(9), 727–729. https://doi.org/10.1097/NMD.0b013e3182a2168a
Amaral, D. G., Schumann, C. M., & Nordahl, C. W. (2008). Neuroanatomy of autism. Trends in Neurosciences, 31(3), 137–145. doi:10.1016/j.tins.2007.12.005
Bourgeron T. (2015). From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nature reviews. Neuroscience, 16(9), 551–563. https://doi.org/10.1038/nrn3992
Hong, D., & Iakoucheva, L. M. (2023). Therapeutic strategies for autism: targeting three levels of the central dogma of molecular biology. Translational psychiatry, 13(1), 58. https://doi.org/10.1038/s41398-023-02356-y
State, M. W., & Šestan, N. (2012). Neuroscience. The emerging biology of autism spectrum disorders. Science (New York, N.Y.), 337(6100), 1301–1303. https://doi.org/10.1126/science.1224989
Krumm, N., O'Roak, B. J., Shendure, J., & Eichler, E. E. (2014). A de novo convergence of autism genetics and molecular neuroscience. Trends in neurosciences, 37(2), 95–105. https://doi.org/10.1016/j.tins.2013.11.005
Sestan, N., & State, M. W. (2018). Lost in Translation: Traversing the Complex Path from Genomics to Therapeutics in Autism Spectrum Disorder. Neuron, 100(2), 406–423. https://doi.org/10.1016/j.neuron.2018.10.015
Brueggeman, L., Koomar, T., & Michaelson, J. J. (2020). Forecasting risk gene discovery in autism with machine learning and genome-scale data. Scientific reports, 10(1), 4569. https://doi.org/10.1038/s41598-020-61288-5
Robertson, C. E., Ratai, E. M., & Kanwisher, N. (2016). Reduced GABAergic Action in the Autistic Brain. Current biology: CB, 26(1), 80–85. https://doi.org/10.1016/j.cub.2015.11.019
Fang, W. Q., Chen, W. W., Jiang, L., Liu, K., Yung, W. H., Fu, A. K. Y., & Ip, N. Y. (2014). Overproduction of upper-layer neurons in the neocortex leads to autism-like features in mice. Cell reports, 9(5), 1635–1643. https://doi.org/10.1016/j.celrep.2014.11.003
Berger, M., Gray, J. A., & Roth, B. L. (2009). The expanded biology of serotonin. Annual review of medicine, 60, 355–366. https://doi.org/10.1146/annurev.med.60.042307.110802
Carlsson, A., Corrodi, H., Fuxe, K., & Hökfelt, T. (1969). Effect of antidepressant drugs on the depletion of intraneuronal brain 5-hydroxytryptamine stores caused by 4-methyl-alpha-ethyl-meta-tyramine. European journal of pharmacology, 5(4), 357–366. https://doi.org/10.1016/0014-2999(69)90113-7
Makkonen, I., Riikonen, R., Kokki, H., Airaksinen, M. M., & Kuikka, J. T. (2008). Serotonin and dopamine transporter binding in children with autism determined by SPECT. Developmental medicine and child neurology, 50(8), 593–597. https://doi.org/10.1111/j.1469-8749.2008.03027.x
Andersson, M., Tangen, Ä., Farde, L., Bölte, S., Halldin, C., Borg, J., & Lundberg, J. (2021). Serotonin transporter availability in adults with autism-a positron emission tomography study. Molecular psychiatry, 26(5), 1647–1658. https://doi.org/10.1038/s41380-020-00868-3
Huang, C. H., & Santangelo, S. L. (2008). Autism and serotonin transporter gene polymorphisms: a systematic review and meta-analysis. American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics, 147B(6), 903–913. https://doi.org/10.1002/ajmg.b.30720
Nakamura, K., Sekine, Y., Ouchi, Y., Tsujii, M., Yoshikawa, E., Futatsubashi, M., Tsuchiya, K. J., Sugihara, G., Iwata, Y., Suzuki, K., Matsuzaki, H., Suda, S., Sugiyama, T., Takei, N., & Mori, N. (2010). Brain serotonin and dopamine transporter bindings in adults with high-functioning autism. Archives of general psychiatry, 67(1), 59–68. https://doi.org/10.1001/archgenpsychiatry.2009.137
Ronan, J. L., Wu, W., & Crabtree, G. R. (2013). From neural development to cognition: unexpected roles for chromatin. Nature reviews. Genetics, 14(5), 347–359. https://doi.org/10.1038/nrg3413
Hutsler, J. J., & Zhang, H. (2010). Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain research, 1309, 83–94. https://doi.org/10.1016/j.brainres.2009.09.120
Belmonte, M. K., Allen, G., Beckel-Mitchener, A., Boulanger, L. M., Carper, R. A., & Webb, S. J. (2004). Autism and abnormal development of brain connectivity. The Journal of neuroscience : the official journal of the Society for Neuroscience, 24(42), 9228–9231. https://doi.org/10.1523/JNEUROSCI.3340-04.200
Ginhoux, F., Lim, S., Hoeffel, G., Low, D., & Huber, T. (2013). Origin and differentiation of microglia. Frontiers in cellular neuroscience, 7, 45. https://doi.org/10.3389/fncel.2013.00045
Chagas, L. D. S., & Serfaty, C. A. (2024). The Influence of Microglia on Neuroplasticity and Long-Term Cognitive Sequelae in Long COVID: Impacts on Brain Development and Beyond. International journal of molecular sciences, 25(7), 3819. https://doi.org/10.3390/ijms25073819
Chagas, L. D. S., Sandre, P. C., Ribeiro E Ribeiro, N. C. A., Marcondes, H., Oliveira Silva, P., Savino, W., & Serfaty, C. A. (2020). Environmental Signals on Microglial Function during Brain Development, Neuroplasticity, and Disease. International journal of molecular sciences, 21(6), 2111. https://doi.org/10.3390/ijms21062111
Dayananda K.K., Ahmed S., Wang D., Polis B., Islam R., Kaffman A. Early life stress impairs synaptic pruning in the developing hippocampus. Brain Behav. Immun. 2023;107:16–31. doi: 10.1016/j.bbi.2022.09.014
Ren J., Yan Y., Cheng S., Long J., Zhang H., Wang J., Shen Y., Zhou Y.D., Anderson M.P. Maternal immune activation alters visual acuity and retinogeniculate axon pruning in offspring mice. Brain Behav. Immun. 2020;89:518–523. doi: 10.1016/j.bbi.2020.08.017
Schaafsma W., Basterra L.B., Jacobs S., Brouwer N., Meerlo P., Schaafsma A., Boddeke E., Eggen B.J.L. Maternal inflammation induces immune activation of fetal microglia and leads to disrupted microglia immune responses, behavior, and learning performance in adulthood. Neurobiol. Dis. 2017;106:291–300. doi: 10.1016/j.nbd.2017.07.017
Spann M.N., Sourander A., Surcel H.M., Hinkka-Yli-Salomaki S., Brown A.S. Prenatal toxoplasmosis antibody and childhood autism. Autism. Res. 2017;10:769–777. doi: 10.1002/aur.1722.
de Fernandez Cossio L., Guzman A., van der Veldt S., Luheshi G.N. Prenatal infection leads to ASD-like behavior and altered synaptic pruning in the mouse offspring. Brain Behav. Immun. 2017;63:88–98. doi: 10.1016/j.bbi.2016.09.028
Filipello F., Morini R., Corradini I., Zerbi V., Canzi A., Michalski B., Erreni M., Markicevic M., Starvaggi-Cucuzza C., Otero K., et al. The Microglial Innate Immune Receptor TREM2 Is Required for Synapse Elimination and Normal Brain Connectivity. Immunity. 2018;48:979–991. e8. doi: 10.1016/j.immuni.2018.04.016.
Xie, L., Choudhury, G. R., Winters, A., Yang, S. H., & Jin, K. (2015). Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10. European journal of immunology, 45(1), 180–191. https://doi.org/10.1002/eji.201444823
Ellwardt, E., Walsh, J. T., Kipnis, J., & Zipp, F. (2016). Understanding the Role of T Cells in CNS Homeostasis. Trends in immunology, 37(2), 154–165. https://doi.org/10.1016/j.it.2015.12.008
Stichel, C. C., & Luebbert, H. (2007). Inflammatory processes in the aging mouse brain: participation of dendritic cells and T-cells. Neurobiology of aging, 28(10), 1507–1521. https://doi.org/10.1016/j.neurobiolaging.2006.07.022
Verkhratsky, A., Rodríguez, J. J., & Parpura, V. (2014). Neuroglia in ageing and disease. Cell and tissue research, 357(2), 493–503. https://doi.org/10.1007/s00441-014-1814-z
Ellul, P., Rosenzwajg, M., Peyre, H., Fourcade, G., Mariotti-Ferrandiz, E., Trebossen, V., Klatzmann, D., & Delorme, R. (2021). Regulatory T lymphocytes/Th17 lymphocytes imbalance in autism spectrum disorders: evidence from a meta-analysis. Molecular autism, 12(1), 68. https://doi.org/10.1186/s13229-021-00472-4
Ribeiro, M., Brigas, H. C., Temido-Ferreira, M., Pousinha, P. A., Regen, T., Santa, C., Coelho, J. E., Marques-Morgado, I., Valente, C. A., Omenetti, S., Stockinger, B., Waisman, A., Manadas, B., Lopes, L. V., Silva-Santos, B., & Ribot, J. C. (2019). Meningeal γδ T cell-derived IL-17 controls synaptic plasticity and short-term memory. Science immunology, 4(40), eaay5199. https://doi.org/10.1126/sciimmunol.aay5199
Hughes, H. K., R J Moreno, & Ashwood, P. (2023). Innate immune dysfunction and neuroinflammation in autism spectrum disorder (ASD). Brain, behavior, and immunity, 108, 245–254. https://doi.org/10.1016/j.bbi.2022.12.001
Erbescu, A., Papuc, S. M., Budisteanu, M., Arghir, A., & Neagu, M. (2022). Re-emerging concepts of immune dysregulation in autism spectrum disorders. Frontiers in psychiatry, 13, 1006612. https://doi.org/10.3389/fpsyt.2022.1006612
Alves de Lima, K., Rustenhoven, J., Da Mesquita, S., Wall, M., Salvador, A. F., Smirnov, I., Martelossi Cebinelli, G., Mamuladze, T., Baker, W., Papadopoulos, Z., Lopes, M. B., Cao, W. S., Xie, X. S., Herz, J., & Kipnis, J. (2020). Meningeal γδ T cells regulate anxiety-like behavior via IL-17a signaling in neurons. Nature immunology, 21(11), 1421–1429. https://doi.org/10.1038/s41590-020-0776-4
Filiano, A. J., Xu, Y., Tustison, N. J., Marsh, R. L., Baker, W., Smirnov, I., Overall, C. C., Gadani, S. P., Turner, S. D., Weng, Z., Peerzade, S. N., Chen, H., Lee, K. S., Scott, M. M., Beenhakker, M. P., Litvak, V., & Kipnis, J. (2016). Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature, 535(7612), 425–429. https://doi.org/10.1038/nature18626
Li, X., Chauhan, A., Sheikh, A. M., Patil, S., Chauhan, V., Li, X. M., Ji, L., Brown, T., & Malik, M. (2009). Elevated immune response in the brain of autistic patients. Journal of neuroimmunology, 207(1-2), 111–116. https://doi.org/10.1016/j.jneuroim.2008.12.002
Ashwood, P., Krakowiak, P., Hertz-Picciotto, I., Hansen, R., Pessah, I., & Van de Water, J. (2011). Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain, behavior, and immunity, 25(1), 40–45. https://doi.org/10.1016/j.bbi.2010.08.003
Nadeem, A., Ahmad, S. F., Al-Harbi, N. O., Al-Ayadhi, L. Y., Sarawi, W., Attia, S. M., Bakheet, S. A., Alqarni, S. A., Ali, N., & AsSobeai, H. M. (2022). Imbalance in proinflammatory and anti-inflammatory cytokines milieu in B cells of children with autism. Molecular immunology, 141, 297–304. https://doi.org/10.1016/j.molimm.2021.12.009
Hughes, H. K., R J Moreno, & Ashwood, P. (2023). Innate immune dysfunction and neuroinflammation in autism spectrum disorder (ASD). Brain, behavior, and immunity, 108, 245–254. https://doi.org/10.1016/j.bbi.2022.12.001
Noori, A. S., Rajabi, P., Sargolzaei, J., & Alaghmand, A. (2024). Correlation of biochemical markers and inflammatory cytokines in autism spectrum disorder (ASD). BMC pediatrics, 24(1), 696. https://doi.org/10.1186/s12887-024-05182-3
Che, X., Hornig, M., Bresnahan, M., Stoltenberg, C., Magnus, P., Surén, P., Mjaaland, S., Reichborn-Kjennerud, T., Susser, E., & Lipkin, W. I. (2022). Maternal mid-gestational and child cord blood immune signatures are strongly associated with offspring risk of ASD. Molecular psychiatry, 27(3), 1527–1541. https://doi.org/10.1038/s41380-021-01415-4
Gottfried, C., Bambini-Junior, V., Francis, F., Riesgo, R., & Savino, W. (2015). The Impact of Neuroimmune Alterations in Autism Spectrum Disorder. Frontiers in psychiatry, 6, 121. https://doi.org/10.3389/fpsyt.2015.00121
Meltzer, A., & Van de Water, J. (2017). The Role of the Immune System in Autism Spectrum Disorder. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 42(1), 284–298. https://doi.org/10.1038/npp.2016.158
Rotulo, G. A., & Palma, P. (2023). Understanding COVID-19 in children: immune determinants and post-infection conditions. Pediatric research, 94(2), 434–442. https://doi.org/10.1038/s41390-023-02549-7
Pasciuto, E., Burton, O. T., Roca, C. P., Lagou, V., Rajan, W. D., Theys, T., Mancuso, R., Tito, R. Y., Kouser, L., Callaerts-Vegh, Z., de la Fuente, A. G., Prezzemolo, T., Mascali, L. G., Brajic, A., Whyte, C. E., Yshii, L., Martinez-Muriana, A., Naughton, M., Young, A., Moudra, A., … Liston, A. (2020). Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell, 182(3), 625–640.e24. https://doi.org/10.1016/j.cell.2020.06.026
da Silva Chagas, L., Sandre, P. C., de Velasco, P. C., Marcondes, H., Ribeiro E Ribeiro, N. C. A., Barreto, A. L., Alves Mauro, L. B., Ferreira, J. H., & Serfaty, C. A. (2021). Neuroinflammation and Brain Development: Possible Risk Factors in COVID-19-Infected Children. Neuroimmunomodulation, 28(1), 22–28. https://doi.org/10.1159/000512815
Randolph-Gips, M., & Srinivasan, P. (2012). Modeling autism: a systems biology approach. Journal of clinical bioinformatics, 2(1), 17. https://doi.org/10.1186/2043-9113-2-17
Ludyga, S., Pühse, U., Gerber, M., & Mücke, M. (2021). Muscle strength and executive function in children and adolescents with autism spectrum disorder. Autism research : official journal of the International Society for Autism Research, 14(12), 2555–2563. https://doi.org/10.1002/aur.2587
Hahamy, A., Behrmann, M., & Malach, R. (2015). The idiosyncratic brain: distortion of spontaneous connectivity patterns in autism spectrum disorder. Nature neuroscience, 18(2), 302–309. https://doi.org/10.1038/nn.3919
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Neurociências & Sociedade

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Todas as publicações da Revista Neurociências e Sociedade estão licenciadas sob a licença Creative Commons Atribuição-Não-Comercial-Compartilhamento pela mesma Licença 4.0 Internacional CC BY-NC-SA 4.0
Você é livre para:
- Compartilhar – copie e redistribua o material em qualquer meio ou formato
- Adaptar – remixar, transformar e desenvolver o material
- O licenciante não pode revogar essas liberdades desde que você siga os termos da licença.
Nos seguintes termos:
- Atribuição — Você deve dar o devido crédito , fornecer um link para a licença e indicar se foram feitas alterações . Você pode fazê-lo de qualquer maneira razoável, mas não de forma que sugira que o licenciante endossa você ou seu uso.
- Não Comercial — Você não pode usar o material para fins comerciais .
- ShareAlike — Se você remixar, transformar ou desenvolver o material, deverá distribuir suas contribuições sob a mesma licença do original.
- Sem restrições adicionais — Você não pode aplicar termos legais ou medidas tecnológicas que restrinjam legalmente outras pessoas de fazerem qualquer coisa que a licença permita.