Comparative Genetics Using Three mtDNA Markers in Aedes aegypti (Linnaeus) Populations from Municipalities in the State of Mato Grosso, Brazil.
DOI:
https://doi.org/10.22409/resa2022.v15i3.a54219Palabras clave:
genetic variability, mitochondrial DNA, ovitraps, vectorResumen
A methodological strategy for teaching in health and environment is to know the genetics of an important vector of dengue in different populations of mosquitoes. The aim of this study was to investigate the genetic variability of Aedes aegypti through molecular markers of mitochondrial DNA, COI, ND4 and ND5. Mosquitoes were collected using ovitraps to capture them at points located in four municipalities in the state of Mato Grosso. Subsequently, we amplified 169 samples with the best DNA result using primers for mitochondrial DNA (mtDNA): Cytochrome Oxidase Subunit I (COI - F and R), Nicotinamide Adenine Dinucleotide Dehydrogenase Subunit 4 (ND4 - F and R) and Nicotinamide Adenine Dehydrogenase 5 (ND5 - F and R). We used the Geneious software to build dendrograms for differentiating populations from each municipality. The interpopulational genetic distance obtained from sequence analysis showed a difference within populations through groups' formation in the ordering. Besides, we identified a difference in the interindividual genetic distance values, notably for the ND5 gene from the populations captured in the four municipalities. We recorded the smallest interindividual genetic distance within populations for populations from Chapada dos Guimarães. Extrinsic factors, including breeding habitat removal, can contribute to decreasing variability, consequently, the dendrogram showed some similarities. Scientific knowledge, laboratory teaching and genetic flow investigation stimulate actions to prevent transmitted diseases and support essential and effective measures to control and combat Ae. aegypti.
Descargas
Citas
BIRUNGI, Josephine; MUNSTERMANN, Leonard E. Genetic Structure of Aedes albopictus (Diptera: Culicidae) Populations Based on Mitochondrial ND5 Sequences: Evidence for an Independent Invasion into Brazil and United States. Bio One. Research Evolved. Annals of the Entomological Society of America, 95 (1): 125-132, 2002. https://doi.org/10.1603/0013-8746(2002)095[0125:GSOAAD]2.0.CO;2
BRAAK, LEO et al. Mosquito-borne arboviruses of African origin: review of key viruses and vectors. Parasites & Vectors, v. 11(29): 1-26, 2018. https://doi.org/10.1186/s13071-017-2559-9
COSTA-DA-SILVA, André Luiz; CAPURRO, Margareth Lara; BRACCO, José Eduardo. Genetic lineages in the yellow fever mosquito Aedes (Stegomyia) aegypti (Diptera: Culicidae) from Peru. Memórias do Instituto Oswaldo Cruz, Rio de Janeiro, 100 (6): 539-544, 2005. https://doi.org/10.1590/S0074-02762005000600007
DEGENER, Carolin Marlen et al. Temporal abundance of Aedes aegypti in Manaus, Brazil, measured by two trap types for adult mosquitoes. Memórias do Instituto Oswaldo Cruz, 109 (8). 1030-1040, 2014. https://doi.org/10.1590/0074-0276140234
EDGAR, Robert C. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792-97, 2004. https://doi.org/10.1093/nar/gkh340
FAY, RW; ELIASON, Donald. A preferred oviposition site as surveillance method for Aedes aegypti. Mosquitoes News, 26: 531-535, 1966. Available in: https://www.biodiversitylibrary.org/part/129402 Access at 25 fev. 2013
FILIPOVIĆ, Igor et al. Using spatial genetics to quantify mosquito dispersal for control programs. BMC Biology, 18 (104): 1-15, 2020. https://doi.org/10.1186/s12915-020-00841-0
FRAGA, ELMARY et al. Genetic variability and evidence of two distinct lineages of Aedes aegypti (Diptera, Culicidae) on São Luís Island in Maranhão, Brazil. The Open Tropical Medicine Journal, J: 6, 11–18, 2013. http://dx.doi.org/10.2174/1874315301306010011
FREITAS, Maria Cecília et al. A extensão no combate à dengue: intervenção com crianças de uma escola pública de Belo Horizonte. Ensino, Saúde e Ambiente, V 12 (3): 190-201, 2019. https://doi.org/10.22409/resa2019.v12i3.a21627
FORATTINI, Oswaldo Paulo. Culicidologia Médica. São Paulo, EDUSP, 2002. v. 2. 864p.
GLORIA-SORIA, Andrea et al. Global Genetic Diversity of Aedes aegypti. Molecular Ecology, 25 (21): 5377-5395, 2016. https://doi.org/10.1111/mec.13866.
HALL, THOMAS A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41:95-98, 1999. https://doi.org/10.4236/sgre.2015.64007
HIRAGI, Cassia et al. Variabilidade genética em populações de Aedes aegypti (L.) (Diptera: Culicidae) utilizando marcadores de RAPD. Neotropical Entomology, 38 (4): 542-547, 2009. https://doi.org/10.1590/S1519-566X2009000400018
KEARSE, Mattew. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data, Bioinformatics, 28 (12): 1647–1649, 2012. https://doi.org/10.1093/bioinformatics/bts199
KIMURA, Motoo. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16:111-120, 1980. https://doi.org/10.1007/BF01731581.
LEQUIME, Sebastian et al. FONTAINE A, GOUILH MA, MOLTINI-CONCLOIS I, LAMBRECHTS L. Genetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes. PloS Genetics, (15): 1-24, 2016. https://doi.org/ 10.1371/journal.pgen.1006111
LIMA, Erika et al. Evaluation of polymorphism in the esterase enzyme in natural populations of Aedes aegypti in Chapada de Guimarães, Mato Grosso. Brazilian Journal of Development, v. 7, n. 2, p. 18539-18552, 2021. 10.34117/bjdv7n2-477.
LI, Yiji et al. Comparative evaluation of the efficiency of the BG-Sentinel trap, CDC light trap and Mosquito-oviposition trap for the surveillance of vector mosquitoes. Parasites & Vectors, 9: 446 10.1186/s13071-016-1724-x. 2016. https://doi.org/10.1186/s13071-016-1724-x.
LOPES, Thayná Bisson Ferraz et al. Genetic study in Aedes (Stegomyia) aegypti (Linnaeus, 1762) from Londrina (Paraná State, Brazil): an approach to population structure and pyrethroid resistance. Revista Brasileira de Entomologia, 65 (1):e20200088, 2021. https://doi.org/10.1590/1806-9665-RBENT-2020-0088
LV, Rui-chen. et al. Genetic diversity and population structure of Aedes aegypti after massive vector control for dengue fever prevention in Yunnan border areas. Scientific Reports, MINISTÉRIO DA SAÚDE. Monitoramento dos casos de arboviroses urbanas transmitidas pelo Aedes (dengue, chikungunya e Zika). Boletim Epidemiológico. Semanas Epidemiológicas 1 a 7, Vol. 51 Nº10. 2020. https://doi.org/10.1038/s41598-020-69668-7
MIYAZAKI, Rosina Djunko et al. Monitoramento do mosquito Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae), por meio de ovitrampas no Campus da Universidade Federal de Mato Grosso, Cuiabá, Estado de Mato Grosso. Revista da Sociedade Brasileira de Medicina Tropical, 42 (4), 2009 julho/agosto. https://doi.org/10.1590/S0037-86822009000400007
OLIVEIRA, Maria Augusta Coutinho de Andrade et al. Analysis of a Dengue Epidemic: Screening as a Tool for Harm Reduction. Revista Brasileira de Ciências da Saúde, 24 (3): 417-428. 2020. http://dx.doi.org/10.22478/ufpb.2317-6032.2020v24n3.50901
PADUAN, Karina dos Santos; RIBOLLA, Paulo Eduardo Martins. Mitochondrial DNA Polymorphism and Heteroplasmy in Populations of Aedes aegypti in Brasil. Journal of Medical Entomology, 45:59-67. 2008. https://doi.org/10.1603/0022-2585(2008)45[59:mdpahi]2.0.co;2
PADUAN, Karina dos Santos; RIBOLLA, Paulo Eduardo Martins. Characterisation of eight single nucleotide polymorphism markers in Aedes aegypti. Molecular Ecology Resources, 2009; 9 (1): 114–116. https://doi.org/10.1111/j.1755-0998.2008.02282.x
PINHEIRO, Renata Fraga & ROCHA, MARCELO BORGES. Contribuição de uma sequência didática no Ensino de Ciências para o combate ao Aedes aegypti. Ensino, Saúde e Ambiente, V11 (3): 186-201, Dez. 2018. https://doi.org/10.22409/resa2018.v11i3.a21555
PONCE Patricio et al. Two Haplotypes of Aedes aegypti Detected by ND4 Mitochondrial Marker in Three Regions of Ecuador. Insects, 12, 200, 2021. https://doi.org/10.3390/insects12030200.
ROZAS Julio et al. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Datasets. Molecular Biology and Evolution, 34: 3299-3302, 2017. https://doi.org/10.1093/molbev/msx248
SALGUEIRO Patrícia et al. Phylogeography and invasion history of Aedes aegypti, the Dengue and Zika mosquito vector in Cape Verde islands (West Africa). Evolution Applications, (12):1797–1811, 2019. https://doi.org/10.1111%2Feva.12834
SANTOS, Débora Aparecida Silva et al. Relação das variáveis climáticas com os casos de dengue em um município do interior de Mato Grosso dos anos 2001 a 2015. Multi temas, Campo Grande, MS, 23 (55): 5-24, 2018 set/dez. https://doi.org/10.20435/mulƟ.v23i55.1742
SCARPASSA Vera Margarete, CARDOZA Tatiana Bacry, CARDOSO Rubens. Population genetics and phylogeography of Aedes aegypti (Diptera: Culicidae) from Brazil. American Journal of Tropical Medicine and Hygiene, 78: 895–903, 2008. Available in:
https://pubmed.ncbi.nlm.nih.gov/18541766/ Access at: 25 fev. 2013.
SCHMIDT Hanno et al. Complete mitogenome sequence of Aedes (Stegomyia) aegypti derived from field isolates from California and South Africa. Mitochondrial DNA Part B, 3 (2): 994–995. 27, 2018. https://doi.org/10.1080/23802359.2018.1495117.
SEIXAS, Gonçalo et al. Aedes aegypti na Ilha da Madeira (Portugal): variação genética de um vetor de dengue recentemente introduzido. Memórias do Instituto Oswaldo Cruz, 108 (1), 2013. https://doi.org/10.1590/0074-0276130386
STEFFLER, Lizandra Makowski et al. Variabilidade genética e distribuição espacial em pequena escala geográfica de Aedes aegypti (Diptera: Culicidae) sob diferentes condições climáticas no Nordeste do Brasil. Parasites & Vectors, 9: 530, 2016. https://doi.org/10.1590/S1519-566X2009000400018
TAMURA Koichiro et al. Mega6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30: 2725-2729, 2013. https://doi.org/10.1093/molbev/mst197
TWERDOCHLIB Adriana L. et al. Genetic variability of a population of Aedes aegypti from Paraná, Brazil, using the mitochondrial ND4 gene. Revista Brasileira de Entomologia, 56(2): 249–256, 2012. https://doi.org/10.1590/S0085-56262012005000030
VAN DE VOSSEMBERG Bart et al. Real-time PCR Tests in Dutch Exotic Mosquito Surveys; Implementation of Aedes aegypti and Aedes albopictus Identification Tests, and the Development of Tests for the Identification of Aedes atropalpus and Aedes japonicus japonicus (Diptera: Culicidae). Journal of Medical Entomology, 52(3): 336–350, 2015. https://doi.org/10.1093/jme/tjv020.
##submission.downloads##
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Sandra Mariotto, Mari Rose Oliveira Silva, Butakka Menezes Butakka, Lenicy Lucas de Miranda Cerqueira, Rosina Djunko Miyazaki , Giovanna Campos Camolezi , Fabiana Aparecida Caldart Rodrigues
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Os autores que publicam nesta Revista concordam com os seguintes termos:
1. Autores mantém os direitos autorais e concedem à revista o direito da primeira publicação.
2. Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicado nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e da publicação inicial nesta revista.